2017 Annual Report Offshore Environmental Effects Monitoring Program ExxonMobil Canada Properties - Sable Offshore Energy Project

Submitted by:

ExxonMobil Canada Properties Sable Offshore Energy Project

1701 Hollis Street Halifax, NS

Date of Submission: March 29, 2018

TABLE OF CONTENTS

ΕX	ŒCUTIV	E SUMMARY	3
1.	INTROI	DUCTION	7
	1.1	Overview	8
	1.2	Background	
	1.3	EMISSIONS AND DISCHARGES	
	1.4	Project Activities	
	1.5	GOALS AND OBJECTIVES	
	1.6	Scope	
	1.7	Report Organization	
	1.8	END OF FIELD LIFE MONITORING	
	1.9	REFERENCES	14
2.	PRODU	CED WATER CHEMISTRY	1
	2.1	Rationale & Background	
	2.2	GOALS	
	2.3	Objectives	
	2.4	SAMPLING PROCEDURES	
	2.5	ANALYTICAL METHODS	
	2.6	RESULTS	
	2.7	DISCUSSION	
	2.8	PW MONITORING PLAN FOR 2018	
	2.9	References	
3.	AIR QU	JALITY	
	3.1	RATIONALE & BACKGROUND	
	3.2	GOALS	
	3.3 3.4	OBJECTIVES	8
	3.4	ANALYSES	
	3.6	RESULTS & DISCUSSION.	
	3.7	CONCLUSIONS	
	3.9	REFERENCES	
4.	BIRD M	IONITORING	
	4.1	RATIONALE / HISTORY	2
	4.2	GOALS	
	4.3	Objectives	
	4.4	METHODOLOGY	
	4.5	Analysis/results	
	4.6	CONCLUSIONS	
	4.7	CURRENT AND FUTURE MONITORING.	8
	4.8	References	
5		IED SEABIRD SURVEYS	
٠.	5.1	RATIONALE	
	5.2	GOAL	_
	5.3	OBJECTIVES	_
	5.4	METHODOLOGY.	_
	5.5	Analysis	3

2017 Annual Report- SOEP Offshore Environmental Effects Monitoring Program Section 1 Introduction

	5.6	Results	. 4
	5.7	Conclusions	. 8
	5.8	References	. 9
6	SUMMAI	RY AND CONCLUSIONS	1

EXECUTIVE SUMMARY

This report is a compilation of results for the 2017 Sable Offshore Energy Project (SOEP) Environmental Effects Monitoring (EEM) program.

The 2017 offshore EEM program was developed by building on the results and lessons learned to date and following recommendations made by the CNSOPB EEM Review Committee which includes representation of Fisheries and Oceans Canada, Environment and Climate Change Canada, and the Canadian Environmental Assessment Agency. Since the SOEP offshore EEM is intended to be adaptive, efficient and meaningful, the monitoring plan is adjusted periodically. This includes removing or adding monitoring components or sampling sites with the prior approval of the CNSOPB EEM Review Committee based on the latest monitoring results and scientific information, or to address new Project activities.

Components of the 2017 EEM Program included:

- Chemical analysis of produced water from Thebaud, Venture and South Venture platforms
- Air quality monitoring on Sable Island
- Flare monitoring on the Thebaud platform
- Seabird and bird monitoring on platforms and supply vessels via assigned offshore personnel responsible for tracking bird observations/data
- Beached bird surveys on Sable Island

Produced water samples were collected by ExxonMobil Canada (EMC) staff. Chemical analysis was conducted by SGS Laboratories. Hurley Environment Ltd. prepared the produced water discussion in Section 2 of this report.

Flare monitoring observations were compiled by EMC staff in 2017.

Further to SOEP's Canadian Wildlife Permit LS 2560 requirements, an annual report detailing the numbers of birds salvaged, released and deceased, provided monitoring data on those species observed on the offshore facilities. Beached bird survey data from Sable Island in section 5 were provided by Zoe Lucas, Sable Island Environmental Specialist.

Mussel collection and body burden analysis was not conducted in 2017. Eleven sampling events between the years 1999 and 2015 to monitor the potential for uptake of hydrocarbons in mussels has shown that the presence of aliphatic hydrocarbons is attributable primarily to biogenic hydrocarbons generated by phytoplankton. Over the years, mussels collected from the legs of the Thebaud platform exhibited lower concentrations of metals relative to control mussels purchased at a local grocery store.

The SOEP offshore EEM program was designed principally to verify predictions made during the SOEP Environmental Assessment (EA) process. These predictions were based on underlying assumptions which were purposefully conservative. Overall, the EA process

concluded that any residual effects of routine project activities (after mitigation) on Valued Ecosystem Components (VECs) in the marine environment would be minor or insignificant and would be restricted to within the 500 m-radius safety zones around offshore platforms. Since surveys began in 1998, EEM results have validated the predictions.

Several mitigative measures beyond those identified in the EA have been undertaken by EMC to further reduce the likelihood of environmental impacts. Some examples from 2017 include:

- All non-essential lighting was turned off at the North Triumph and Alma platforms to minimize potential attraction of marine birds;
- Achieving an annual average OIW target of under 30mg/L in produced water for the offshore platforms between 2014-2017; and
- Achieving the goal of no Drains water excursions over 15 mg/L for the offshore platforms between 2011and 2017.

Notable results of the 2017 program include:

Produced Water Chemistry and Toxicity (Section 2)

- Total Petroleum Hydrocarbon daily average values were below Offshore Waste Treatment Guidelines (OWTG) (2010) oil-in-water concentration limits at three SOEP platforms Thebaud, Alma and South Venture. There was 1 exceedance at the Venture platform in 2017. The Venture exceedance was related to the PW stream not having enough residence time in the separator. Operations have modified the process to prevent a reoccurrence.
- Test results since 2005 show that chemical levels vary widely over time and location in large part due to varying reservoir characteristics.

Air Quality/Flare Monitoring (Section 3)

- EMC is participating in an ESRF funded study led by Dalhousie University entitled "Data Display and Source Apportionment of Volatile Organic Compounds and Particulate Matter on Sable Island". This project will provide regulators, industry and researchers with necessary data to evaluate the impacts attributable to contaminant emissions to ambient air from petroleum related activities. The final report is expected to be released in early 2018.
- Kingfisher Environmental Health Consultants (KEHC) has conducted data analysis and graphing of air quality and meteorological data from 2017, identified elevated events (no exceedances) in air monitoring data while cross referencing these to wind direction/wind speed. The objective is to determine potential correlation with a particular facility's operations, if required.
- The 2017 air missions report indicated that the "elevated events" in O3, SO2, PM2.5 were associated with Long Range Transport (LRT) continental outflow, and not from

O&G operations or associated with ocean biogenic fluxes. The observed NOx, H2S and some SO2 is likely to be related to multiple sources, e.g. flaring on the O&G platforms and ship emissions. However, these concentrations are extremely low and well below any regulations.

Seabird Monitoring (Section 4)

- Further to SOEP's Canadian Wildlife Permit LS 2560 requirements, an annual report detailing the numbers of birds salvaged, released and deceased on the platforms provided monitoring data on those species observed on the offshore facilities.
- The number of birds found in 2017 was the same as the previous year (21) found in 2016. It has been observed that 2017 had relatively low instances of periods of poor visibility (foggy weather) offshore, with the exception of a few days during the spring and fall. 11 of the 21 birds observed in 2017 were released and did not perish offshore.

Beached Bird Surveys (Section 5)

- During 2017, the corpses and fragments of 473 beached seabird corpses were collected on Sable Island. Alcids accounted for 73.2% of total seabird corpses recovered. Of the 473 corpses, 247 (52.2%) were complete (i.e. with >70% of body intact, Codes 0-3). Table 5-3 shows totals & linear densities for clean complete corpses (Code 0) for winter (November-April) and summer (May-October), and annual oiling rate based on complete corpses (i.e., with >70% of body intact, Codes 0 3).
- The overall oiling rate for all species combined (based on complete corpses, Codes 0 to 3) was 0% (compared with 0% in 2016, 0.5% in 2015 and 3.2% in 2014). In particular, the oiling rate for alcids was 0% (compared with 0% in 2016, 1.7% in 2015 and 7.9% in 2014).
- None of the 247 complete corpses or the 226 incomplete corpses were oiled.

1. INTRODUCTION

1.1 OVERVIEW

This report is a compilation of studies for the 2017 Sable Offshore Energy Project (SOEP) Environmental Effects Monitoring (EEM) program. Figure 1-1 in the Appendix shows the location of the platforms and pipelines. Data were provided by various EMC staff, contracted specialists and laboratories:

- Beached bird survey data was collected by Zoe Lucas, Sable Island Environmental Specialist;
- Bird monitoring data on birds salvaged, released and deceased on the offshore platforms collected daily by EMC staff;
- Produced water chemical analyses was provided by SGS Laboratories under contract to EMC;
- Flare monitoring observations were made daily by EMC staff; and
- Air emissions monitoring data from the Sable Island Air Quality Monitoring Station was collected by Kingfisher Environmental Health Consultants supported by Dalhousie Departments of Process Engineering and Applied Science and Oceanography.

The SOEP offshore EEM program initially focused on determining potential effects of drilling and production activities at Tier 1 sites (i.e., Venture, Thebaud, and North Triumph) beginning in 1997. With the majority of the development drilling completed and the start-up of operations at Tier 1 sites by 2000, EEM surveys undertaken from 2001 to 2003 focused on the effects on sediments and bottom fauna of exposure to intermittent discharges of muds/cuttings during drilling and continuous produced water discharges during operations. Until 2002, the assessment of produced water was delayed until the produced water volume was of sufficient quantity to study.

The 2005 program addressed start-up activities at Tier 2 sites (Alma in 2003 and South Venture in 2004) whilst considering lessons learned from the Tier I EEM Program and the recommendations from the 2003 Offshore Environmental Effects Monitoring Workshop held at the Bedford Institute of Oceanography.

Based on the results observed and the adaptive basis of the EEM program, the scope for the 2006 program was modified. Sediment chemistry and toxicity, scallop taint and body burden, and fish health components were discontinued in the 2006 program.

Subsequent offshore EEM programs were built on the previous years' EEM programs, and were developed from recommendations made by the Canada-Nova Scotia Offshore Petroleum Board (CNSOPB) EEM Review Committee which includes representatives of Fisheries and Oceans Canada (DFO), Environment and Climate Change Canada (ECCC), and the Canadian Environmental Assessment Agency (CEAA).

A summary of the history of the SOEP EEM program is provided in Table 1-4 in the Appendix.

1.2 BACKGROUND

The purpose of the EEM program is to test whether the effects of facility presence and production emissions into the marine and atmospheric environments occur within the zones of influence predicted by the Environmental Impact Statement (EIS) (Table 1-1). Environmental measurements are concentrated where meaningful changes are expected to occur and where the point source discharge is located. The 2017 offshore EEM program was designed to address relevant predictions made during the SOE environmental assessment process.

Table 1-1: EA Predictions Relevant To 2017 EEM Program

EIS PREDICTION ¹	VALUED ECOSYSTEM COMPONENT ²	2016 EEM COMPONENT
"IMPACTS OF EFFLUENT DISCHARGES (E.G. PRODUCED WATER) WERE CONSIDERED TO HAVE NO SIGNIFICANT IMPACTS ON THE MARINE ENVIRONMENT."	• FISH	PRODUCED WATER CHEMISTRY
"AIR EMISSIONS WERE CONSIDERED TO HAVE NO SIGNIFICANT IMPACTS ON THE MARINE ENVIRONMENT."	Sable Island	FLARE MONITORING AIR QUALITY/ EMISSIONS ANALYSIS
"LIGHTS [FROM WORK LIGHTS AND GAS FLARES] MAY ATTRACT MIGRANT BIRD SPECIES, ESPECIALLY IN FOG AND/OR LOW CLOUD AND RAIN." ³	SEABIRDS	ANNUAL REPORT TO CWS ON BIRDS SALVAGED, RELEASED AND DECEASED
"BECAUSE OF THE IMPORTANCE OF SABLE ISLAND AND THE GULLY, SPECIAL ATTENTION WILL BE PAID TO THESE AREAS IN THE DEVELOPMENT OF MONITORING."4	SEABIRDS SABLE ISLAND	Air Quality/ Emissions Analysis Beached Seabird Surveys

¹Unless otherwise noted, the predictions apply only to routine construction and operations activities (i.e., not accidental events) as stated in the Executive Summary of the SOEP–EIS Vol. 3.

The EEM components were based on valued ecosystem components (VECs) identified during the EA process and components identified by Sable Offshore Environmental Effects Monitoring Advisory Group (SEEMAG) and the EEM study team.

The SOEP offshore EEM is intended to be adaptive, efficient and meaningful. Therefore, the monitoring plan is adjusted annually by dropping or adding monitoring components or sampling sites with the prior approval of the CNSOPB EEM Review

²Only offshore-related VECs assessed under the marine environment were considered

³ As stated in Section 5.2.1.9 of the SOEP – EIS Vol. 3.

⁴ As stated in Section 7.4 of the SOEP – EIS Vol. 3.

Committee based on the latest monitoring results and scientific information, or to address new Project activities.

1.3 EMISSIONS AND DISCHARGES

The five platforms generate atmospheric, liquid, and solid wastes. Table 1-2 lists various emissions from the Thebaud, Venture, South Venture, North Triumph, and Alma platforms with the exception of solid wastes. Various solid and liquid wastes generated offshore at SOEP platforms are skipped via supply vessel to shore for treatment and disposal at approved facilities in Nova Scotia or elsewhere in Canada depending on the type of waste. This EEM program evaluates produced water and air emissions. The Noble Regina Allen (NRA) harsh weather jack-up rig has been contracted by SOEP to conduct the Sable Plug and Abandonment (P&A) Program of the production wells. It was positioned at the Thebaud platform in late November 2017 to begin the P&A work for Sable decommissioning. This additional installation caused a minor increase in emissions from the SOEP fields. A field-wide planned maintenance shutdown occurred between August 17 and August 27, 2017.

Table 1-2 provides a summary of the main sources of emissions on each platform.

Table 1-2: Summary of Emissions Sources on all Platforms

PLATFORM	OPERATION STATUS	POTENTIAL EMISSION SOURCES
THEBAUD {LAT:	STEADY-STATE	FLARE (~9.9 E3M3/DAY)
43.53 LONG: -	PRODUCTION OPERATIONS	,
60.12}	THROUGH 2017. (WELL	PRODUCED WATER (16.6 MG/L OIW
	P&A ACTIVITIES BEGAN IN	avg. 2017)
	DECEMBER 2017)	DRAINS WATER DISCHARGES (VARIES
		BY WEATHER)
		NATURAL GAS TURBINES
		DIESEL GENERATORS
		NRA DIESEL GENERATORS
VENTURE {LAT:	STEADY-STATE	VENTING (~4.6 E3M3/DAY)
43.59 LONG: -	PRODUCTION OPERATIONS	PRODUCED WATER (11.5 MG/L OIW
59.37}	THROUGH 2017	AVG. 2017)
		Drains water discharges
		(BROUGHT TO HRM FOR RECYCLING
		AND DISPOSAL OR TREATED
		OFFSHORE VIA CRUDESORB
		FILTRATION ON THEBAUD)
		DIESEL GENERATORS
North Triumph	STEADY-STATE	VENTING (~0.08 E3M3/DAY)
{LAT: 43.35	PRODUCTION OPERATIONS	PRODUCED WATER ROUTED TO
Long: -59.51}	THROUGH 2017	THEBAUD PLATFORM
		Drains water discharges
		(BROUGHT TO HRM FOR RECYCLING
		AND DISPOSAL OR TREATED
		OFFSHORE VIA CRUDESORB
		FILTRATION ON THEBAUD)

		DIESEL GENERATORS	
ALMA {LAT:	STEADY-STATE	VENTING (~0.6 E3M3/DAY)	
43.35, Long: -	PRODUCTION OPERATIONS	PRODUCED WATER (8.0 MG/L OIW	
60.12}	THROUGH 2017	AVG. 2017)	
,		DRAINS WATER DISCHARGES (VARIES	
		BY WEATHER)	
		DIESEL GENERATORS	
South Venture	STEADY-STATE	VENTING (~0.5 E3M3/DAY)	
{LAT: 43.59	PRODUCTION OPERATIONS	PRODUCED WATER (4.6 MG/L OIW	
Long: -59.37}	THROUGH 2017	AVG. 2017)	
		DRAINS WATER DISCHARGES (VARIES	
		BY WEATHER)	
		DIESEL GENERATORS	

1.4 PROJECT ACTIVITIES

Routine production activities were conducted during 2017 at the Thebaud, North Triumph, Alma, Venture and South Venture platforms. In late November 2017, the Noble Regina Allen (NRA) harsh weather jack-up rig was contracted by SOEP to conduct the Sable Plug and Abandonment (P&A) Program of the production wells. The NRA rig will move from site to site offshore as each field reaches its cessation of production.

1.5 GOALS AND OBJECTIVES

This EEM program involves the collection of repeated measurements of environmental variables to detect changes directly or indirectly attributable to production discharges. The EEM program is undertaken with the following primary objectives:

- to verify whether the effects of discharging production wastes into the marine environment occur within the zones of influence predicted by the EA report;
- to evaluate the effectiveness of mitigation and identify the need for improved or altered mitigation; and
- to provide an early warning of undesirable change in the environment.

1.6 SCOPE

This report focuses on the EEM program of the Tier I and Tier II development and includes the natural gas well fields at Venture, South Venture, Thebaud, Alma, and North Triumph. (As the North Triumph platform does not discharge produced water, no sampling occurs at this platform). Potential effects of Project activities evaluated in the 2017 EEM program included produced water, air emissions (flaring observations and air quality analysis), and birds/seabirds. (Table 1-3).

Table 1-3: 2017 Sable Offshore EEM Program

Location	Environmental Component	Type of Monitoring/Analysis	2017 Program
Thebaud	Seabirds	 Daily monitoring for birds found on platform (stranded/perished). 	 Annual report to CWS on birds salvaged, released and deceased
	Air Quality	Visual observations of the Flare Plume from platform. Flare plume observations provided to EMC contractor for analysis with Sable Island Air Quality Monitoring data.	- Record flare plume characteristics twice daily (using EC supplied smoke chart) along with concurrent weather conditions on the platform - Investigate spikes in air monitoring data while checking wind direction/wind speed to identify potential correlation with facility operations.
Sable Island	Seabirds	Monthly Beached Bird Surveys	 Surveys to be carried out and report to be prepared by Zoe Lucas, resident biologist on Sable Island. Relate to historical time series data.
Thebaud, Venture, South Venture and Alma	Produced Water	Chemistry analysis as per OWTG	Relate to OWTG expectation (annual sample from each platform).

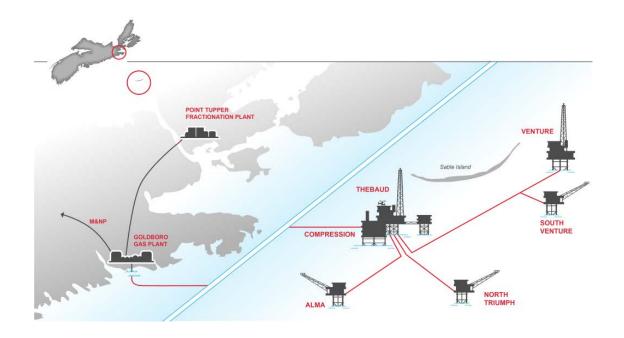
The surveys undertaken in 2017 continued to investigate or support data collection to later analyze potential effects of the development on:

- water quality of the receiving environment with respect to chemical characterization;
- air quality from emissions from the offshore platforms on Sable Island; and
- the presence of the platforms on sea and land based birds.

1.7 REPORT ORGANIZATION

This report consists of an assemblage of component study reports relating to specific EEM requirements. Each component study report was prepared using a concise format agreed to by the C-NSOPB EEM Review Committee to facilitate information summarization and readability. To the extent possible, references were provided for detailed methodological and analytical procedures.

1.8 END OF FIELD LIFE MONITORING


ExxonMobil Canada has commenced activities related to the decommissioning of the Sable Project. Included in these activities is the development of a post-decommissioning or post-abandonment monitoring plan which considers the SOEP EIS predictions, the results of the adaptive EEM programs, historical discharges and the methods used for decommissioning and abandonment activities.

The proposal for the post-abandonment monitoring plan will be submitted to the CNSOPB for approval prior to execution of the removals phase. The post-abandonment monitoring will begin once all offshore assets have been removed or abandoned in-situ.

1.9 REFERENCES

DFO, 2003. Workshop on Offshore Oil and Gas Environmental Effects Monitoring, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, May 26-30, 2003, Environmental Science Research Fund Report.

2. PRODUCED WATER CHEMISTRY AND TOXICITY

2.1 RATIONALE & BACKGROUND

Produced Water (PW) includes formation water, injection water and process water that is extracted along with oil and gas during petroleum production. At offshore production installations, this water is separated from the petroleum process stream and, after treatment, is discharged to the marine environment.

Based on comprehensive literature reviews of national and international monitoring results, potential toxic concentrations appear restricted to less than 2 km (Bakke et al. 2013) with acute toxicity within 500 m (Neff et al. 2012) of platform sites. The risk of widespread, long term impact from the operational discharges such as PW on populations and the ecosystem is presently considered low (Bakke et al. 2013).

With respect to SOEP specifically, a DFO COOGER research study in 2009 (DFO COOGER, 2010) showed that potential contaminants in the relatively small PW discharges¹ from the SOEP central processing platform (Thebaud) and Venture satellite platform were diluted rapidly² to no-effects concentration levels within a few metres³ of the mouth of the discharge caisson located below the sea surface. The resulting narrow plume of PW shifts primarily under the influence of the ebb and flow of tidal currents. The overall conclusion of the study was that "...the toxicity of produced water from the Venture/Thebaud platforms is not considered an environmentally relevant factor of concern". While EMCP provided condensate samples to DFO (COOGER, BIO) in 2013 for ESRF-funded laboratory research studies⁴, they were not requested to provide produced water samples since then as COOGER is no longer conducting research with produced water including work related to the biological effects of contaminants.

The scope of the 2017 program focused on PW monitoring and characterization requirements as per the Offshore Waste Treatment Guidelines (OWTG, 2002 & 2010).

¹The discharge rates of PW at SOEP platforms are one or two orders of magnitude less than at other East Coast offshore facilities. For example, the average daily discharge rates (m3) for SOEP platforms in 2016 are as follows: Venture (150), Thebaud (125), S. Venture (5) and Alma (15). Average daily discharge rates for other former, current and proposed East Coast projects respectively are as follows: previous COPAN (18,140); current Hibernia (14,000), Deep Panuke (~1,700) and Hebron (45,000).

² Organic constituents of SOEP produced water have also been shown to be highly volatile and therefore readily vaporize prior to discharge (Section 6.2.14; DFO COOGER, 2010), (Terrens et al. 1996)

³ Predicted using the DREAM (Dose-related Risk and Effect Assessment Model)

⁴ The study is a joint project between DFO (COOGER) and the National Research Council looking at methods to evaluate the biodegradation of natural and chemical dispersion of crude oil (from Grand Banks) and Scotian Shelf condensate

Based largely on these findings and previous SOEP EEM results⁵, toxicology bioassay analyses using the Microtox, the Sea Urchin Fertilization, and the Threespine Stickleback tests that were carried out in previous years were not conducted in 2017.

The OWTG (2002) did not specify threshold limits for any chemical parameters to be tested. Chemical parameters measured were: aluminum, ammonium, antimony, arsenic, barium, boron, cadmium, chromium, cobalt, copper, iron, lead, magnesium, mercury, molybdenum, nickel, phosphorus, selenium, silver, strontium, sulphur, thorium, tin, uranium, vanadium, and zinc and total petroleum hydrocarbons (TPH).

All facilities were shut-in and did not discharge PW between August 17 and August 27 due to a planned field-wide shutdown⁶. The practice of cycling wells continued which resulted in variable water production volumes.

The performance target with respect to TPH monitoring under the OWTG (2010) are a 30-day weighted average of oil in discharged PW (OIW) that does not exceed 30 mg/L and a 24-hour average of oil-in-water, as calculated at least twice per day, that does not exceed 44 mg/L. There was one exceedence of OWTG for OIW in 2017 at the Venture platform, as discussed below in section 2.7.

The CNSOPB conducted an inspection of the produced water system on the Alma platform in June 2017 which included:

- A review of the documents describing EMCP's produced water sampling, analysis and reporting procedures.
- A site visit and review of the produced water system on the Alma platform.
- Witnessing produced water sampling procedures on Alma.
- Comparison of the results of the PW samples analyzed by two onshore labs SGS & Maxxam (audit samples) indicated lower but similar OIW #'s (ie. 6.6 mg/L & 6.7 mg/L respectively, CCME method) compared to the offshore lab on Thebaud (11.7 mg/L, Standard Methods Oil & Grease) (see Table 2.2. below).

2.2 GOALS

- Review the CNSOPB PW ECM results for 2017 in light of requirements specified in the OWTG (2010);
- Review 2017 ECM results in light of historical monitoring and characterization data at SOEP facilities;
- Recommend a PW monitoring strategy for 2018 in light of combined ECM, EEM and research findings at SOEP facilities and internationally

⁵ The annual SOEP EEM report summarizes the results of EEM, ECM, and any PW-related research studies.

⁶ As per design, PW from the North Triumph platform was routed to Thebaud for treatment and discharge

2.3 OBJECTIVES

- Summarize 2017 ECM PW TPH daily monitoring and note exceedences (if any) from OWTG (2010)
- Discuss PW chemical characterization (selected chemicals) of ECM samples in light of historical data.

2.4 SAMPLING PROCEDURES

PW samples, which were supplied by EMC, were collected and analyzed following procedures outlined in tables below and in attached "*Produced Water Sampling Procedures*" provided by SGS (Appendix for Section 2).

Table 2.1 2017 PW Sampling Procedures

Collection Date(s):	Thebaud: November 9				
Chemistry &	Venture: December 6				
Toxicity samples	South Venture: December 8				
	Alma: June (audit samples for TPH analyses only)				
	<i>Note:</i> All samples analyzed within the requisite maximum 3-day holding time				
	allowed				
Platforms:	Thebaud, Venture, South Venture, Alma (audit samples for TPH analyses				
	only)				
Type of Sample::	Produced water				
Test Sample	Taken directly from the discharge caisson on the platform (prior to overboard				
Locations:	discharge to the marine environment).				
Reference Sample	N/A				
Locations:					
Sample Preparation ⁷ :	Sample Bottles were provided by SGS as follows (see Attachment 2-1):				
	• BTEX/TPH – 2x40ml amber vials (filled to top; no head space) and 1x1L glass bottle (filled approximately 90%)				
	• Metals (dilute and shoot) – 1x250ml plastic (filled approximately 80%)				
	Mercury – 100 ml amber glass				
	• Ammonia and TKN – 60ml amber glass (filled approximately 80%)				
Sampling QA/QC8:	• Each bottle was supplied by the SGS laboratory to ensure the integrity of the samples.				
	• All samples (except TPH) were stored in a sealed cooler with a frozen gel				
	pack to keep samples cool. They were shipped to shore by helicopter				
	following sample collection. The samples were then picked up by SGS				
	for chemical testing.				
	TPH samples analyzed on Thebaud platform				

⁷ Cougar Helicopters and Canadian Helicopters do not currently allow any preservatives on flights offshore. Preservatives are added upon receipt at the laboratory, if necessary.

⁸ The QA/QC procedures for the each laboratory involved with the various testing included the use of duplicates, method blanks, surrogates, spikes, chain of custody, and certified reference materials where applicable.

2.5 ANALYTICAL METHODS

Contractors:

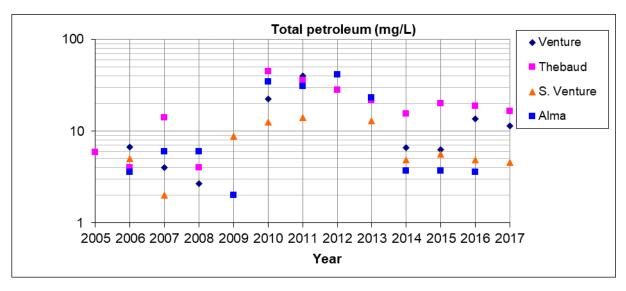
1. SGS (Chemical Analysis)

Table 2.2 Parameters Analyzed:

Parameters	Analysis Method
TPH	CCME, Standard Methods 5520
Chemical Characterization	Standard Methods 3125
Sulphur	EPA 200.7
Thorium	EPA 200.8
Mercury	Standard Methods 3112 B
Ammonia-N	Standard Methods 4500-NH3 G
Total Kjeldahl Nitrogen	Standard Methods 4500-N0RG D

2.6 RESULTS

Table 2.3 PW Chemical Characterization⁹


Sampling Date (2017)		9 November	6 December	8 December
Chemical Parameters as per OWTG (2002 & 2010)	Detection Limit (mg/L)	THEBAUD	VENTURE	SOUTH VENTURE
Thorium		ND	ND	ND
Mercury	0.000026	ND	ND	ND
Aluminum	0.005	0.417	0.628	0.349
Arsenic	0.0002	0.004	0.668	0.300
Barium	12.5	6.25	887	9210
Boron	0.005	0.485	47.4	7.71
Cadmium	0.000017	0.00003	0.001	ND
Chromium	0.001	0.073	0.092	0.072
Cobalt	0.001	ND	0.045	0.017
Copper	0.001	0.006	0.231	0.098
Iron	0.05	5.03	155	66.6
Manganese	0.002	0.221	51	7.64
Magnesium	0.1	8.5	1510	595
Lead	0.0005	0.0014	0.054	ND
Molybdenum	0.002	0.002	0.033	ND
Nickel	0.002	0.007	1.01	0.376
Phosphorus	0.02	ND	1.42	ND
Selenium	0.001	0.008	0.300	0.204
Strontium	12.5	9.34	2450	10100
Sulphur	0.25	1.03	47	14
Thorium	0.02	ND	ND	ND
Uranium	0.0001	ND	ND	ND
Vanadium	0.002	0.009	0.655	0.384
Zinc	0.005	0.166	5.56	0.667
ТРН		13.3	13.8	3.9
Ammonia	0.1	29.0	295	213
TK Nitrogen	0.4	NA	181	112

 $^{^9}$ Bolded values for selected chemical parameters were plotted below (see Section 2.7) to facilitate comparisons between platforms over the sampling period (2005-2017).

2.7 DISCUSSION

2.7.1 Chemistry

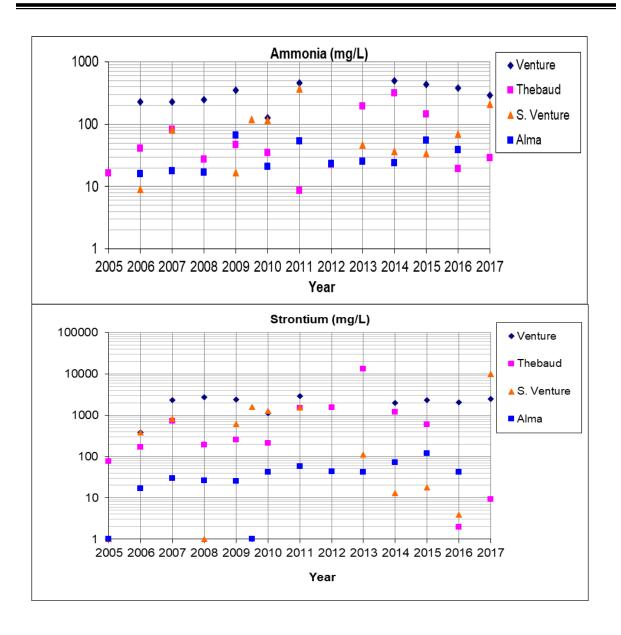
TPH (PW chemical characterization samples) values at the Thebaud, Venture and South Venture platforms (Table 2.4; Figure 2.4) were well below the 24-hour threshold limit (i.e., 44 mg/L) for TPH specified in the OWTG (2010). The 2017 TPH values at the three platforms have continued the general trend toward relatively stable lower values in recent years (since 2010) (Figure 2.4).

Figure 2.4 TPH (PW Chemical Characterization Samples)

As in the past, the Venture platform discharged the highest volume of PW in 2017 by an order of magnitude over other platforms including the central processing platform (Thebaud)¹⁰ (Table 2.5). Based on routine daily measurements of TPH at Thebaud and on an opportunistic basis on unmanned platforms in 2017 (Table 2.5), there was 1 exceedence at the Venture platform. The Venture exceedence was related to the PW stream not having enough residence time in the separator. Operations have modified the process to prevent a reoccurrence. Besides differences in reservoir (i.e., geotechnical) characteristics, other factors which may contribute to variation in TPH concentrations in PW samples include time of sampling, efficiency of the onboard treatment system, and operational upsets. The practice of cycling some wells began in 2015 which may also have resulted in variable water production volumes. Variation in sand production in the reservoir is also known to influence the effectiveness of the treatment systems.

¹⁰ Produced water from NT is still routed to Thebaud for processing and discharge and therefore included in the total volume given for Thebaud (Table 2.5).

Table 2.5 Total annual (2017) PW Volumes/ Avg. Daily TPH Values (2017)


Platform	Total Volume (m3)	Avg. Daily Concentration (mg/L)
Thebaud	23,676	16.6
Alma	5,821	8.0
Venture	49,710	11.5
S. Venture	2,383	4.6

While petroleum hydrocarbon compounds such as PAHs and phenols and heavy metals such as lead are known to be toxic, they are likely to have contributed little to the overall toxicity of PW due to their low concentrations. In 2017, concentrations of many non-organic PW constituents were non-detectable (ND) or very close to the detection limit (Table 2.4; Figure 2.6). Many key non-organic constituents have been very low (<10 mg/L) (i.e., lead & zinc). With few exceptions (up to 2016), the lowest values of selected chemical constituents have been recorded at the Alma platform which was not sampled in 2017 for logistical reasons. The two most potentially toxic constituents, iron and ammonia, have been found in relatively high concentrations in Venture PW samples (Figure 2.6) which may explain in part the relatively high toxicity in annual laboratory bioassay testing of PW samples taken on that platform (DFO COOGER, 2010). Higher values for the alkaline earth metals barium and strontium at South Venture are noted. Payne et al. (2011) concluded that barium associated with produced water does not pose a significant toxicity risk to finfish.

¹¹ Note the variable logarithmic scales on the y- axis of these plots. Zero concentration values were plotted on lowermost y-axis for illustrative purposes.

2.8 PW MONITORING PLAN FOR 2018

EMCP will strive to be consistent with the performance targets for the treatment and monitoring of PW outlined in the latest version of the OWTG (15 December, 2010). The results of the sampling and analysis program including the annual sampling for PW characterization and individual sample values, the 24-hour performance metric, the 30-day volume-weighted average, and the total volume of produced water discharged, for each day of discharge, will be reported to the Board monthly.

The potential for negative environmental effects of PW on the marine environment is considered extremely low due to the:

- Rapid dilution to 'no-effects' concentration levels within a few metres of the platforms (DFO, 2010);
- Low biodiversity associated with the predominant sand bottom of Sable Island Bank;
- Low density of operational gas platforms in the Sable Island area; and the
- Low intensity of other marine activities such as commercial fishing, marine transportation, military activity, tourism, etc. (DFO, 2012) on Sable Island Bank.

2.9 REFERENCES

<u>Bakke et al. 2013</u> Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Mar. Env. Res. 92: 154-169.

DFO COOGER, 2010. Characteristics and Dispersion of Produced Water Discharged from the Venture/Thebaud Offshore Platforms on the Scotian Shelf. Report prepared for AMEC Earth and Environmental Ltd and ExxonMobil Canada East.

Environment Canada 1984 Manual for Spills of Hazardous Materials

Neff et al. 2012 Produced Water: Overview of Composition, Fates, and Effects, [In Lee and Neff, Editors, 2012, Produced Water: Environmental Risks and Advances in Mitigation Strategies - Proceedings of the International Produced Water Conference: Environmental Risks and Advances in Mitigation Technologies St. John's, Newfoundland and Labrador, Canada October 17 – 18, 2007]

OWTG, 2002/2010 National Energy Board, Canada-Newfoundland Offshore Petroleum Board, Canada-Nova Scotia Offshore Petroleum Board, August 2002, December 2010, Offshore Waste Treatment Guidelines.

<u>Payne et al. (2011)</u> Risks to Fish Associated with Barium in Drilling Fluids and Produced Water: A Chronic Toxicity Study with Cunner (*Tautogolabrus adspersus*)
Produced Water pp 402-417.

<u>Terrens & Tait 1996</u> Monitoring Ocean Concentrations of Aromatic Hydrocarbons from Produced Formation Water Discharges to Bass Strait, Australia. SPE 36033, [In Proceedings of the International Conference on Health, Safety and Environment. Society of Petroleum Engineers, Richardson, TX, pp. 739-747]

3. AIR QUALITY

Sable Island photo courtesy of Green Horse Society

ACRONYMS

APS Aerodynamic Particle Sizer

AS Air Server

BC Black carbon

CH4 Methane

ESRF Environmental Studies Research Funds

GC Gas Chromatograph

GEM-MACH-10 Global Environmental Multiscale model - Modelling Air quality and

Chemistry (10 km² grid cell)

H₂S Hydrogen Sulfide

O₃ Ground-level ozone

LRT Long-Range Transport

MS Mass Spectrometer

NAPS National Air Pollution Surveillance network

NMHC total-Non Methane Hydrocarbons

NO Nitrogen monoxide

NO₂ Nitrogen dioxide

NO_x Nitrogen oxides

PM Particulate matter

PM_{2.5} Fine atmospheric particles with a median aerodynamic diameter less than,

or equal to, 2.5 microns

SO₂ Sulfur dioxide

TD Thermal Desorber

VOC Volatile organic compounds

WHO World Health Organization

EXECUTIVE SUMMARY

Kingfisher Environmental Health Consultants were contracted to complete a number of specific tasks related to air emissions on Sable Island for ExxonMobil Canada Properties (EMCP) that include:

- acquisition of meteorological and air quality data pertaining to monitoring on Sable Island for 2017;
- conducting data analysis and graphing of air quality and meteorological data;
- investigating elevated events in air monitoring data, checking wind direction/wind speed and contacting EMC to identify potential correlation with a particular facility's operations, as required.

This air monitoring report covers the following air quality information and metrics measured on Sable Island:

- O3, H2S, SO2, NOx and PM2.5
- temperature, wind direction and wind speed

In 2014, Nova Scotia Environment changed their air quality mandate to focus their attention on air-zones in populated areas of the Nova Scotia mainland. This resulted in a cessation of their management of certain air quality instruments on Sable Island. The instruments that were affected included automatic analyzers/sampler for O3, NOx, H2S, SO2 and also PM2.5 via a MetOne Beta Attenuation Monitor (BAM). New H₂S, SO₂ and BC instruments were purchased in early 2016. A refurbished O₃ analyzer and a PM_{2.5} (BAM 1020) were installed on Sable Island in Q1 of 2016.

In terms of off shore oil and gas production activity, Thebaud, Venture, North Triumph, Alma and South Venture platforms produced during 2017 with the exception of the planned maintenance shut-down between August 17th 2017 to August 27th 2017where flaring did not take place.

This report will feature data, where available, between January 1st 2017 to December 31st 2017 for meteorology, O3, SO2, H2S, NOx, and PM2.5. The 2017 mean (min: max units) temperature and wind speed was found to be 8.5 (-10.6 : 23.2°C), 26.1 km/h (0.0 : 91 km/h) respectively. It was found that the average wind vector for 2017 was 236° which is consistent with prevailing winds in the North West (NW) Atlantic.

The data completeness in 2017 for O3, PM2.5, NOx, SO2 and H2S was found to be 95%, 98.2%, 85.9%, 95.7% and 23.6% respectively. The poor data completeness for H2S was due to an undetected instrument fault from the factory. The annual mean (min: max units) for PM2.5 mass concentration = $5.8 (0.0:53.7 \mu g/m3)$, O3 = 35.7 (10.5:66.5 ppbv), SO2 = 2.0 (0.0:16.2 ppbv), H2S = 0.3 (0.0:0.9 ppbv) and NOx = 0.8 (0.0:8.2 ppbv) respectively.

It was noticed that the SO2 concentrations were well above the spike threshold (6 ppbv) from May to October, and then again in December (typically between 10-16 ppbv). These SO2 levels are significantly higher than last year where the spike threshold of 6 ppbv was never exceeded. It is suspected that this is also related to the factory gain set too high in the SO2 instrument leading to higher concentrations at lower observations. Therefore the SO2 concentrations should be treated with caution.

The annual concentrations of SO2, H2S, PM2.5 and NOx are well below Provincial, Federal and international air quality regulations. The annual mean O3 concentration is within the Canada maximum acceptable region but is a known long-range pollutant associated with continental outflow and therefore unlikely to be related to O&G production emissions.

"Elevated events" in O3, SO2, PM2.5 were associated with LRT continental outflow, and not from O&G operations or associated with ocean biogenic fluxes. The observed NOx, H2S and some SO2 is likely to be related to multiple sources, e.g. flaring on the O&G platforms and ship emissions. However, these concentrations are extremely low and well below any regulations.

3.1 RATIONALE & BACKGROUND

Sable Island is one of the most important locations in the world for conducting climate monitoring with weather records dating back to the 1871 (Inkpen et al., 2009; GreenHorseSociety, 2012). Because the Island is 160 km from main land Nova Scotia it can be thought of as a truly marine influenced sampling location. Because of this, it is in the perfect position to monitor emissions from the ocean as well as continental outflow from North America (Inkpen et al., 2009). While sources of anthropogenic PM_{2.5}, VOCs and trace reactive gases are well known, it is recognized that there are still large gaps in knowledge with regards to biogenic emissions of terpenes and other VOC emissions from terrestrial (forest fires and vegetation) and marine sources (phytoplankton and direct emissions from the ocean) that act as pre-cursors of cloud condensation nuclei (CCN), secondary organic aerosols (SOA) and O₃; all of which perturb climate, earth systems and health (Gibson et al., 2013c; Gibson et al., 2013a; Palmer et al., 2013; Gibson et al., 2009b; Gibson et al., 2009a; Monks et al., 2009; Palmer and Shaw, 2005). In addition the transport of nitrogen and sulphur aerosol species from local and upwind continental sources can impact the terrestrial and aquatic flora and fauna on Sable Island {Gibson, 2013 #1204}. Therefore, understanding local and long-range upwind sources of PM_{2.5}, VOCs and trace reactive gases to the Sable Island airshed is vital, not just for local air quality, but from the perspective of climate inventories and climate forcing (Monks et al., 2009).

Two detailed air emission reports have been conducted pertaining to the Sable Island airshed, (Inkpen et al., 2009) and (Waugh et al., 2010). The Environment and Climate Change Canada led ESRF project report "Sable Island Air Monitoring Program Report 2003-2006", identified a knowledge gap in monitoring to adequately identify impacts from the offshore O&G, pointing to the need for enhanced on-island monitoring of industrial emissions, including VOC and PM speciation in the Scotian Shelf Airshed (SSA) (Inkpen et al., 2009).

Waugh et al., (2010) mention in their report that some of the short-term spikes in data might be due to local source influences resulting from off-shore oil and gas (O&G) activities in the vicinity of Sable Island.

Sable Island's unique location in the Atlantic ensures that it receives significant transboundary air pollutant flows from areas in the North Eastern US and the Windsor - Québec corridor as well as significant amounts of sea salt (Waugh et al., 2010). Frontal systems have been shown to "push" pollution into narrow "vertical bands" of high concentrations ahead of the front and have been identified as causing relatively large, but short-lived, spikes in air quality data on Sable Island (Waugh et al., 2010). In addition, previous studies have shown that seasonal fluxes of natural marine emissions (terpenes, dimethylsulfide, volatile organic compound) are likely to react in the atmosphere to form secondary O₃ and PM_{2.5} which further contribute to the total air pollution mix on Sable Island (Gibson et al., 2013c; Gantt et al., 2010). Waugh et al., (2010) reported a number of longrange transport (LRT) events that were identified from air mass back trajectories, synoptic charts and maps of air pollution monitoring data in the NE US and E Canada prior to the air mass reaching Sable Island. These air pollution maps were obtained from the US data base AIRNow (http://airnow.gov/) (Waugh et al., 2010).

Personal communication has revealed that in addition to the on-Island diesel generators that generate power, there a number of other on-Island source of $PM_{2.5}$ and trace gases, these include other small generators and trash burning. The practice of trash burning may be causing spikes in observations. There is the potential for trash burning to be miss-assigned as O&G production emissions.

Because of the recommendations of the Inkpen et al., (2009) and Waugh et al., (2010) reports, funding was made available through the Environmental Studies Research Funds (ESRF) for a four year project, the aim of which is to unambiguously apportion the source contribution of the O&G facility operations to the total concentration of VOC's on Sable Island. This ESRF funding was awarded to Drs' Mark Gibson and Susanne Craig, Departments of Process Engineering and Applied Science and Oceanography respectively. This project will also have the value added component of being able to apportion the marine and LRT emissions/pollution impacting the Sable Island airshed. A feature of this project is the live streaming of the continuous monitoring data to a website data display. In addition, threshold concentrations for O&G relevant air pollutants have been set and will alert Encana and EMC in the event of spikes in air pollution concentrations. If this occurs, Dr. Gibson's Atmospheric Forensics Research Group (AFRG) will work in concert with the O&G facility operators to determine if the spike was related to O&G facility activity or a result of another local or LRT source. The ability of O&G facility operators to quickly respond to any air pollution spikes will safeguard air quality, marine ecosystems, marine fisheries, O&G facility operations, as well as O&G occupational health and safety.

The O&G industry has had a presence on the Scotian shelf since the late 1960's (CNSOPB, 1990). Currently, EMC have five fields in operation offshore Nova Scotia: Thebaud, Venture, North Triumph, Alma and South Venture. A platform at Thebaud provides central facilities for gathering and dehydration. A second platform provides compression of the gas

from all fields, while a third platform at this location provides wellhead facilities for the Thebaud field itself. Hydrocarbons produced at the four other platforms are transported through a system of subsea flowlines to the Thebaud platform. After dehydration at Thebaud, the raw gas is transported through a subsea flowline to landfall at Goldboro, Nova Scotia, and to a gas processing plant located nearby. There the gas is conditioned by the removal of natural gas liquids (NGLs) to meet high quality sales gas specifications. The sales gas is then shipped to markets in eastern Canada and the northeastern United States, through the Maritimes & Northeast Pipeline (M&NP). NGLs are transported by pipeline to the Point Tupper Fractionation Plant for final processing before being sent to market in the form of propane, butane and condensate (Per. Comm, Environmental Advisor – EMC).

Figure 1 below shows the location of the O&G platforms surrounding Sable Island (source: http://www.cnsopb.ns.ca/pdfs/sable_area_platforms.pdf).

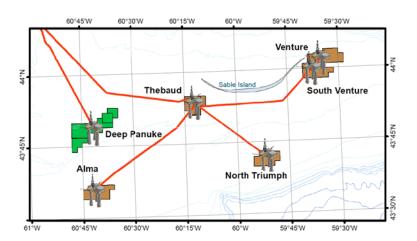


Figure 1. Location of the O&G platforms surrounding Sable Island

	Platform Centre Location - NAD83			
	Geog	Geographic		one 20)
Platform Name Latitude Longitude		Longitude	Northing	Easting
Thebaud	43° 53' 28.4" N	60° 11' 57.2" W	4863604.8	724963.3
Thebaud Process Jacket	43° 53' 30.8'' N	60° 12' 00.0'' W	4863676.7	724898.3
Venture	44° 01' 59.8" N	59° 34' 54.3'' W	4881245.1	773902.9
North Triumph	43° 41' 56.6" N	59° 51' 13.6" W	4843261.4	753522.2
Alma	43° 35' 47.1" N	60° 41' 19.3'' W	4829644.9	686560.9
South Venture	43° 59' 50.6'' N	59° 37' 38.6" W	4876899.3	770420.7
Deep Panuke	43° 48' 45.704" N	60° 41' 18.126" W	4853666.9	685917.2

	Platform Centre Location - NAD27			
	Geographic		UTM (Z	one 20)
Platform Name	Latitude	Longitude	Northing	Easting
Thebaud	43° 53' 28.1" N	60° 11' 59.9" W	4863377.6	724909.9
Thebaud Process Jacket	43° 53' 30.5'' N	60° 12' 02.7" W	4863449.5	724844.9
Venture	44° 01' 58.0'' N	59° 34' 12.5" W	4881019.4	773848.6
North Triumph	43° 41' 56.4'' N	59° 51' 16.4" W	4843035.7	753467.9
Alma	43° 35' 46.8'' N	60° 41' 22.0" W	4829417.0	686507.0
South Venture	43° 59' 50.4'' N	59° 37' 41.4" W	4876673.5	770366.4
Deep Panuke	43° 48' 45.439" N	60° 41' 20.804" W	4853441.1	685863.0

Table 1. Geographic locations of the O&G platforms surrounding Sable Island

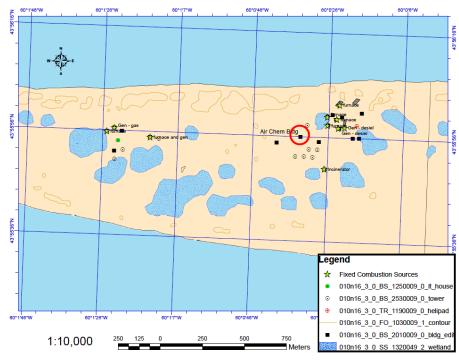


Figure 2. Location of facilities and on-Island combustion sources on Sable Island.

3.2 GOALS

The goal of the air quality monitoring component of the EEM program is to collect information on potential effects originating from the offshore platforms that may affect Sable Island or that can be monitored from the island. Sable Island provides a unique platform upon which to augment the offshore EEM program.

3.3 OBJECTIVES

Acquire a better understanding of both ambient air concentrations in the Sable area and quantitatively identify any possible effects from offshore operations, while taking into consideration long-range and localized emission sources on Sable Island itself including air traffic to and from the island, diesel electric supply and waste incinerations at the research station.

3.4 2017 AIR QUALITY MONITORING ON SABLE ISLAND

3.4.1 Nova Scotia Environment, Sable Island, Air Quality Monitoring and Reporting

In January 2015, Nova Scotia Environment stopped managing and maintaining instruments on Sable Island. Management of the instruments on Sable Island has now reverted to Environment and Climate Change Canada (ECCC).

3.4.2 Instrumentation on Sable Island

Table 2 provides a summary of the air pollution instrumentation that are currently deployed on Sable Island. Table 2 also provides the temporal resolution of the measurement of sample collection.

Table 2. Summary of instrumentation on Sable Island

Equipment	Contributor	Comments	
Air Monitoring Shed	ESRF (100%)		
Teledyne NO _x Analyzer	ECCC (100%)	Hourly	
GRIMM PM _{2.5}	ECCC (100%)	Hourly	
Teledyne H ₂ S Analyzer	ESRF (100%)	Hourly	
Teledyne SO ₂ Analyzer	ESRF (100%)	Hourly	
TECO O₃ Analyzer	ECCC (100%)	Hourly	

3.5 ANALYSES

3.5.1 Data Acquisition

The air pollution data that was available for 2017 include O3, SO2, H2S, NOx, and PM2.5 mass concentration.

3.5.2 Air Quality Standards pertaining to Sable Island

Table 3 contains the air quality standards for Canada, Nova Scotia and the World Health Organization (WHO). These air quality regulations will be used for comparison with the 2015 air quality data pertaining to Sable Island.

Table 3. Nova Scotia Air Quality Regulations (*Environment Act*) and *Canadian Environmental Protection Act*Ambient Air Quality Objectives (Suggested air monitoring thresholds - µg/m³ (ppb))

Pollutant and		Nova Scotia	Canada				
units (alternative units in brackets)	Averaging Time Period	Maximum Permissible Ground Level Concentration	Canada Wide Standard	Ambient Air Quality Objectives			World Health
				Max Desirable	Max Acceptable	Max Tolerable	Organization (Who)
Nitrogen dioxide ug/m³ (ppb)	1 hour	400 (213)	-	-	400 (213)	1000 (532)	(105)
	24 hour	200 (106)	-	-	200 (106)	300 (160)	
	Annual	100 (53)	-	60 (32)	100 (53)	-	(21)
Sulfur dioxide up/m³ (ppb)	1 hour	900 (344)	-	450 (172)	900 (344)	-	
	24 hour	300 (115)	-	150 (57)	300 (115)	800 (306)	(75)
	Annual	60 (23)	-	30 (11)	60 (23)	-	
Total Suspended Particulate Matter (TSP) up/m ³	24 hour	120	-	-	120	400	
	Annual	70 (geometric mean)	-	60	70	-	
PM2.5 (fine) up/m ³	24 hour, 98 th percentile over 3 consecutive years	-	30 (by 2010)	-		-	
	24 hour				120		25
	Annual			60	70		10
PM10-2.5 (coarse) up/m ³		-	-	-	-	-	
PM ₁₀ (sum of fine and coarse)	Annual						50
Carbon Monoxide mg/m³ (ppm)	1 hour	34.6 (30)	-	15 (13)	35 (31)	-	
	8 hour	12.7 (11)	-	6 (5)	15 (13)	20 (17)	

Table 3 Cont...

Pollutant and		Nova Scotia	Canada				
units (alternative units in brackets)	Averaging Time Period	Maximum Permissible Ground Level Concentration	Canada Wide Standard	Ambient A	World Health Organization (Who)		
	1 hour	160 (82)	-	100 (51)	160 (82)	300 (153)	
Oxidants – ozone up/m³ (ppb)	8 hour, based on 4 th highest annual value, averaged over 3 consecutive years		(65) {by 2010}	•	1	1	(50)
	24 hour	-	-	30 (15)	50 (25)	-	
	Annual	-	-	-	30 (15)	-	
Hydrogen	1 hour	42 (30)	-	-	-	-	
sulphide up/m³ (ppb)	24 hour	8 (6)	-	-	-	-	

3.5.3 On-Island Emission Sources

Because of the need to provide power, space heating, water heating and cooking facilities it was necessary to install generators, furnaces and cooking appliance infrastructure on Sable Island to meet this requirement. Due to the anticipated impact on air quality measurements from these heating appliances and power generators they were situated as far away as possible to the East of the air chemistry building (per. comm. Gerry Forbes, 2013). The combustion sources on Sable Island include:

- Generators
- All-purpose utility vehicle & vehicle garage
- Furnace at Operations building
- Furnace at the staff house
- Furnace at the OIC house
- Furnace at the Triplex

3.5.4 Air Emission "Elevated Event" Thresholds and Threshold Breaches

Air emission monitoring thresholds values were calculated by Dr. Mark Gibson (Dalhousie University) in consultation with Encana and Exxon Mobil. The threshold values were calculated using extreme value analysis. These thresholds were established for monitoring purposes to identify possible "elevated events" in air emissions parameters on Sable Island

that could be related to O&G production operations. They are not regulatory thresholds, and are well below any international /Canadian /provincial health impact thresholds (see Table 4). An "elevated event" is not a reportable incident but only indicates that an air parameter is above typical background levels. All "elevated events" are investigated to determine if they are related to O&G operations near to Sable Island. Investigations include air mass backtrajectory analysis and pollution rose analysis to determine the long-range and local upwind sources respectively. Table 4 provides the threshold values chosen for the air emission evaluation of O&G operations.

Table 2. Air emission 'elevated event' thresholds for Sable Island

Metric	Reference: extreme value analysis (1-hr data period) ¹	Suggested threshold value (1-hr)	Canada Ambient Air Quality Objectives
NOx ²	3/year return threshold for data available from 01/01/10 to 16/07/10	17.0 ppbv	213 ppb (1-hr)
SO_2	1/year return threshold for data available from 01/04/08 to 01/10/11	6.0 ppbv	344 ppb (1-hr)
H_2S^3	1/year return threshold for data available from 02/05/12 to 09/10/12	3.11 ppbv	30 ppb (1-hr, NS)
PM _{2.5}	1/year return threshold for data available from 01/01/07 to 01/10/11	$168.0 \mu g/m^3$	120 μg/m ³ (24-hr)
Ozone	1/year return threshold for data available from 01/01/07 to 01/04/11	104.0 ppbv	82 ppb (1-hr)
	(1-hr data period)		

- Note 1: An extreme value analysis was conducted on air emissions data available between 2007 and 2011. For each metric, the period mentioned in this column indicates the period for which data was available for this specific metric during these five years. For H₂S, the data available for these five years was poor quality; therefore, 2012 H₂S emission data was obtained from NSE to calculate the H₂S threshold. All thresholds will be reviewed on an annual basis and recalculated with the new emissions data that becomes available.
- Note 2: A higher return threshold (3/year) was used for the extreme value analysis for NOx (which should results in a higher number of elevated events to investigate) because "elevated pollution events" identified during the 2003-2006 ESRF study for this parameter were linked to oil and gas operations as a possible causal factor.
- Note 3: When Deep Panuke first starts flaring acid gas during the start-up phase, in addition to the automatic alarm system (i.e. even if H₂S levels are below the alarm threshold), H₂S data will be monitored by Dalhousie personnel in real-time to confirm EA predictions that levels of H₂S generated by acid gas flaring would be negligible on Sable Island. Observer(s) will be monitoring H₂S values in conjunction with acid gas flaring activities and weather conditions to identify any potential correlation between acid gas flaring and H₂S levels on the island.
- Note 4: Canada Ambient Air Quality Objectives (CAAQO), maximum acceptable 1-hr thresholds are provided as a reference. For PM_{2.5}, the 24-hr CAAQO threshold was provided because a 1-hr threshold was not available. For H₂S, the Nova Scotia 1-hr ground-level concentration threshold was used because a CAAQO threshold was not available. The ozone "elevated event" threshold is higher than the CAAQO threshold because of historical elevated ozone levels in the area.

3.6 RESULTS AND DISCUSSION

This section covers data analysis results, graphing and additional analysis results related to the assessment of air quality on Sable Island in 2017

3.6.1 2017 Air Quality Data

Table 5 contains the descriptive statistics and data completeness for 2017 meteorological variables

Table 5 Meteorological Variables 2017

Variable	Mean	St. Dev.	Minimum	Q1	Median	Q3
Temp (°C)	8.5	7.1	-10.6	2.7	8.1	15.1
Dew Point Temp (°C)	5.9	8.2	-17.1	0.1	5.9	13.4
Rel Hum (%)	84.4	12.4	41.0	75. 0	88.0	95.0
Visibility (km)	10.4	6.1	0.0	4.8	12.9	16.1
Stn Press (kPa)	101.5	0.9	97.7	10 0.9	101.6	102.1
Wind Chill	-9.8	3.8	-22.0	- 13. 0	-9.0	-7.0
Wind Spd (km/h)	26.1	13.0	0.0	17. 0	24.0	34.0
Wind Dir	236°					

Variable	Maximum	Range
Temp (°C)	23.2	33.8
Dew Point Temp (°C)	20.6	37.7
Rel Hum (%)	99.0	58.0
Visibility (km)	16.1	16.1
Stn Press (kPa)	104.6	6.9
Wind Chill	-2.0	20.0
Wind Spd (km/h)	91.0	91.0

From Table 5 it can be seen that the mean (min: max units) temperature and wind speed was found to be 8.5 (-10.6 : 23.2°C), 26.1 (0.0 : 91 km/h).

Table 6 below provides the descriptive statistics of for O3, PM2.5, NOx, SO2 and H2S observations encountered during 2017.

Table 6. Descriptive Statistics for O₃, PM_{2.5}, NO_x, SO₂ and H₂S

	O ₃ ppbv	PM _{2.5} μg/m ³	NO _x ppbv	SO ₂ ppbv	H ₂ S ppbv
Data					
Completeness	95%	98.2%	85.9%	95.7%	23.6%
Mean	35.7	5.8	0.8	2.0	0.3
StDev	7.6	4.8	0.7	2.1	0.2
Min	10.5	0.0	0.0	0.0	0.0
Q1	30.7	2.6	0.4	0.7	0.2
Median	35.7	4.2	0.6	1.4	0.3
Q3	39.8	7.4	1.0	2.4	0.4
Maximum	66.5	53.7	8.2	16.2	0.9
Range	56.0	53.7	8.2	16.2	0.9

It can be seen from Table 6 that the data completeness for O3, PM2.5, NOx, SO2 and H2S was found to be 95%, 98.2%, 85.9%, 95.7% and 23.6%. The data completeness for O3, PM2.5, NOx and SO2 is the best for these metrics for many years (thanks to Alan Wilson, ECCC). The poor data completeness for H2S was due to an undetected instrument fault from the factory (a decaying emission lamp set to maximum gain). The annual mean (min : max units) PM2.5 mass concentration = $5.8 \ (0.0 : 53.7 \ \mu g/m3)$, while not directly comparable, is well below the CWS of $28 \ \mu g/m3$ (based upon the 98th percentile three year average). The mean O3 = $35.7 \ (10.5 : 66.5 \ ppbv)$, SO2 = $2.0 \ (0.0 : 16.2 \ ppbv)$, H2S = $0.3 \ (0.0 : 0.9 \ ppbv)$ and NOx = $0.8 \ (0.0 : 8.2 \ ppbv)$ respectively.

The annual concentrations of SO2, H2S and NOx are well below Provincial, Federal and international air quality regulations. The annual mean O3 concentration is within the Canada maximum acceptable region. O3 is strongly associated with long-range air pollution outflow from the continent, and highly unlikely to be related to O&G production emissions of O3 forming pre-cursor gases (hydrocarbons and NO2), especially given the prevailing wind that would carry these O3 pre-cursor gases well to the west of the O&G production facilities and away from Sable Island.

Figure 3 below provides the wind rose generated using LakesEnvironmental WRPLOT software. The average wind vector for 2017 was calculated to be 236°.

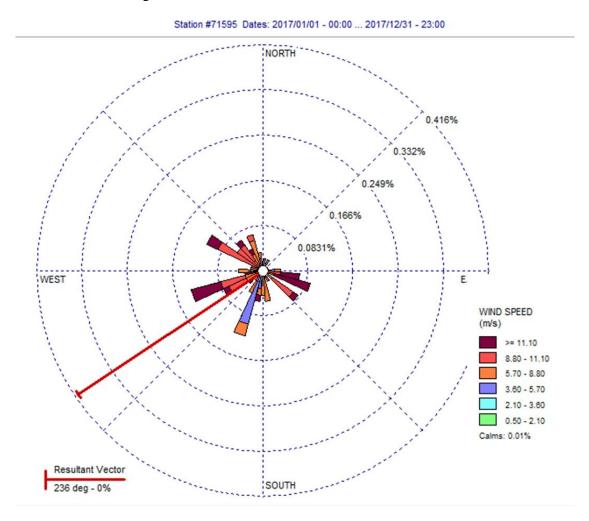


Figure 3. Wind rose for Sable Island (January 1st 2017 to December 31st 2017)

Figure 4 below provides a time series of the PM2.5 and O3 observation encountered during 2017.

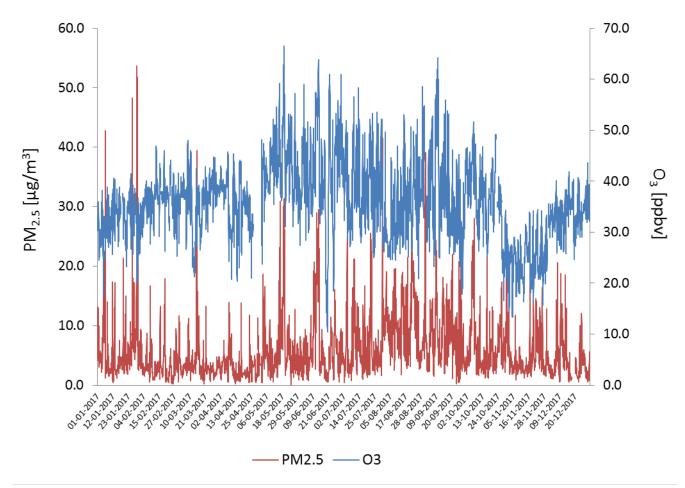


Figure 3. Time series of 2017 PM_{2.5} and O₃ observations

From Figure 4, the elevated O_3 observed in the May is due to the 'Spring-time ozone maximum' seen at this time every year (Gibson et al., 2009). Other elevated events in O_3 are due to long-range transport (confirmed by HYSPLIT air mass back trajectory analysis of the 3 highest elevated events). Where $PM_{2.5}$ and O_3 covary they are likely related to continental outflow. Where $PM_{2.5}$ is elevated but O_3 is not, it is likely a result of sea salt spray. The highest $PM_{2.5}$ concentrations are found in the Winter (January) which is also associated with the highest storm activity and highest sea salt spray production impacting Sable Island. The low O_3 and $PM_{2.5}$ in November is associated with clean northerly air flow that typically occurs at this time of year (Gibson, M.D., et al., 2013).

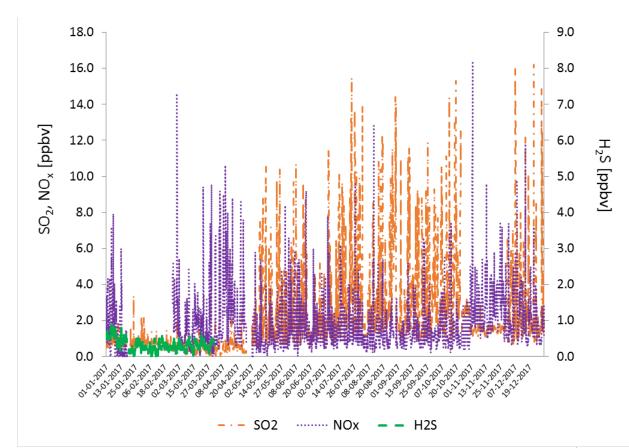


Figure 5 below provides an annual hourly time series of SO₂, NO_x and H₂S observed during 2017.

From Figure 5 it can be seen that H₂S data was only available until April 2nd (data completeness 23.6%), due to a decaying instrument emission lamp. This has been resolved for 2018 observations. The H₂S concentrations that were measured are extremely low, the mean being 0.1 ppbv below the instrument detection limit (0.4 ppbv) and the max only being 3 standard deviations away from the detection limit of the instrument. The H₂S observations of 3 standard deviations away from the detection limit (of which there were few) are likely a result of off-shore O&G production, but could also be related to ocean emissions from decaying biogenic material on the sea bed and sediment rising to the surface and advecting to Sable Island. There is the possibility of H₂S being emitted from the sediment at the bottom of the surface ponds on Sable Island, seal emissions and other anaerobic decay of biological matter on the Island, e.g. dead horses and seals close to the monitoring site.

From Figure 5 it can be observed, that the lowest NO_x (marker for near-field combustion sources) occurred during the period of the ExxonMobil and Deep Panuke O&G production fields being shut down between August 17^{th} through August 27^{th} . The highest NO_x observations tended to be at the start of the year when both O&G production facilities were operating. However, these, and some other elevated events in NO_x could also be due to on-Island diesel generation, aircraft or supply vessels. Whatever the source of the elevated NO_x

they are well below any air quality regulations. The SO_2 concentrations tend to be low from the start of the year until May 3^{rd} . The SO_2 tends to be low in November when Deep Panuke was not in operation, but this also coincides with clean northerly air flow. SO_2 is also a component of ship emissions and long range transport and is therefore particularly difficult to apportion it to O&G emissions. Again, the mean SO_2 concentration is well below regulations. SO_2 could also be related to flaring on the O&G facilities and therefore may covary with NOx, however, regression analysis shows a poor R^2 (0.002) between NOx and SO_2 implying little relationship between the two metrics, adding weight to multiple sources (not just O&G production) of both NO_x and SO_2 impacting the island.

3.7 CONCLUSIONS

The 2017 mean temperature, wind speed and wind direction was found to be 8.5° C, 26.1 km/h. The average wind direction was 236° which is associated with the known pre-vailing wind in this area of the NW Atlantic. The data completeness for O3, PM2.5, NOx, SO2 and H2S was found to be 95%, 98.2%, 85.9%, 95.7% and 23.6% respectively. The data completeness for O3, PM2.5, NOx and SO2 is the best for these metrics for many years. The poor data completeness for H2S was due to an undetected instrument fault from the factory. The annual mean (min: max units) for PM2.5 mass concentration = $5.8 (0.0:53.7 \,\mu\text{g/m3})$, O3 = $35.7 (10.5:66.5 \,\text{ppbv})$, SO2 = $2.0 (0.0:16.2 \,\text{ppbv})$, H2S = $0.3 (0.0:0.9 \,\text{ppbv})$ and NOx = $0.8 (0.0:8.2 \,\text{ppbv})$ respectively.

It was noticed that the SO2 concentrations were well above the spike threshold (6 ppbv) from May to October, and then again in December (typically between 10-16 ppbv). These SO2 levels are significantly higher than last year where the spike threshold of 6 ppbv was never exceeded. It is suspected that this is also related to the factory gain set too high in the SO2 instrument leading to higher concentrations at lower observations. Therefore the SO2 concentrations should be treated with caution.

The annual concentrations of SO2, H2S, PM2.5 and NOx are well below Provincial, Federal and international air quality regulations. The annual mean O3 concentration is within the Canada maximum acceptable region but is a known long-range pollutant associated with continental outflow and therefore unlikely to be related to O&G production emissions. The most important feature of the 2017 air missions report is that the elevated events were associated with LRT continental outflow, and not from O&G operations. The low concentrations of NOx and SO2 appeared to be associated with clean northerly airflow over Sable Island in November. However, this also coincided with a maintenance shutdown of Deep Panuke.

3.9 REFERENCES

- BROWNELL, D. K., MOORE, R. M. & CULLEN, J. J. 2010. Production of methyl halides by Prochlorococcus and Synechococcus. *Global Biogeochem. Cycles*, 24, GB2002.
- CNSOPB 1990. Annual Report. 22.
- CNSOPB 2013. Encana's Deep Panuke Project.
- GANTT, B., NICHOLAS, M., ZHANG, Y. & XU, J. 2010. The effect of marine isoprene emissions on secondary organic aerosol and ozone formation in the coastal United States. *Atmospheric Environment*, 44, 115-121.
- GIBSON, M. D., GUERNSEY, J. R., BEAUCHAMP, S., WAUGH, D., HEAL, M. R., BROOK, J. R., MAHER, R., GAGNON, G. A., MCPHERSON, J. P., BRYDEN, B., GOULD, R. & TERASHIMA, M. 2009a. Quantifying the Spatial and Temporal Variation of Ground-level Ozone in the Rural Annapolis Valley, Nova Scotia, Canada using Nitrite-impregnated Passive Samplers. *Journal of the Air & Waste Management Association*, 59, 310-320.
- GIBSON, M. D., HEAL, M. R., BACHE, D. H., HURSTHOUSE, A. S., BEVERLAND, I. J., CRAIG, S. E., CLARK, C. F., JACKSON, M. H., GUERNSEY, J. R. & JONES, C. 2009b. Using Mass Reconstruction along a Four-Site Transect as a method to interpret PM10 in West-Central Scotland, United Kingdom. *Journal of the Air and Waste Management Association*, 59, 1429-1436.
- GIBSON, M. D., HEAL, M. R., LI, Z., KUCHTA, J., KING, G. H., HAYES, A. & LAMBERT, S. 2013a. The spatial and seasonal variation of nitrogen dioxide and sulfur dioxide in Cape Breton Highlands National Park, Canada, and the association with lichen abundance. *Atmospheric Environment*, 64, 303-311.
- GIBSON, M. D., KUNDU, S. & SATISH, M. 2013b. Dispersion model evaluation of PM2.5, NOx and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. *Atmospheric Pollution Research*, 4, 157-167.
- GIBSON, M. D., PIERCE, J. R., WAUGH, D., KUCHTA, J. S., CHISHOLM, L., DUCK, T. J., HOPPER, J. T., BEAUCHAMP, S., KING, G. H., FRANKLIN, J. E., LEAITCH, W. R., WHEELER, A. J., LI, Z., GAGNON, G. A. & PALMER, P. I. 2013c. Identifying the sources driving observed PM2.5 temporal variability over Halifax, Nova Scotia, during BORTAS-B. *Atmos. Chem. Phys.*, 13, 7199-7213. GREENHORSESOCIETY 2012. Sable Island Greenhorse Society.
- INKPEN, T., HINGSTON, M., WAUGH, D., KEAST, S., MCPHERSON, J., WORTHY, D. & FORBES, G. 2009. Sable Island Air Monitoring Program Report: 2003-2006 Meteorological Service of Canada Atlantic Region Science Technical Report
- MONKS, P. S., GRANIER, C., FUZZI, S., STOHL, A., WILLIAMS, M. L., AKIMOTO, H., AMANN, M., BAKLANOV, A., BALTENSPERGER, U., BEY, I., BLAKE, N., BLAKE, R. S., CARSLAW, K., COOPER, O. R., DENTENER, F., FOWLER, D., FRAGKOU, E., FROST, G. J., GENEROSO, S., GINOUX, P., GREWE, V., GUENTHER, A., HANSSON, H. C., HENNE, S., HJORTH, J., HOFZUMAHAUS, A., HUNTRIESER, H., ISAKSEN, I. S. A., JENKIN, M. E., KAISER, J., KANAKIDOU, M., KLIMONT, Z., KULMALA, M., LAJ, P., LAWRENCE, M. G., LEE, J. D., LIOUSSE, C., MAIONE, M., MCFIGGANS, G., METZGER, A., MIEVILLE, A., MOUSSIOPOULOS, N., ORLANDO, J. J., O'DOWD, C. D., PALMER, P. I., PARRISH, D. D., PETZOLD, A., PLATT, U., PÖSCHL, U., PRÉVÔT, A. S. H., REEVES, C. E., REIMANN, S., RUDICH, Y., SELLEGRI, K., STEINBRECHER, R., SIMPSON, D., TEN BRINK, H., THELOKE, J., VAN DER WERF, G. R., VAUTARD, R., VESTRENG, V., VLACHOKOSTAS, C. & VON

- GLASOW, R. 2009. Atmospheric composition change global and regional air quality. *Atmospheric Environment*, 43, 5268-5350.
- PALMER, P. I., PARRINGTON, M., LEE, J. D., LEWIS, A. C., RICKARD, A. R., BERNATH, P. F., DUCK, T. J., WAUGH, D. L., TARASICK, D. W., ANDREWS, S., ARUFFO, E., BAILEY, L. J., BARRETT, E., BAUGUITTE, S. J. B., CURRY, K. R., CARLO, P. D., CHISHOLM, L., DAN, L., DRUMMOND, J. R., FORSTER, G., FRANKLIN, J. E., GIBSON, M. D., GRIFFIN, D., HELMIG, D., HOPKINS, J. R., HOPPER, J. T., JENKIN, M. E., KINDRED, D., KLIEVER, J., BRETON, M. L., MATTHIESEN, S., MAURICE, M., MOLLER, S., MOORE, D. P., ORAM, D. E., O'SHEA, S. J., OWEN, R. C., PAGNIELLO, C. M. L. S., PAWSON, S., PERCIVAL, C. J., PIERCE, J. R., PUNJABI, S., PURVIS, R. M., REMEDIOS, J. J., ROTERMUND, K. M., SAKAMOTO, K. M., STRAWBRIDGE, K. B., STRONG, K., TAYLOR, J., TRIGWELL, R., TERESZCHUK, K. A., WALKER, K. A., WEAVER, D., WHALEY, C. & YOUNG, J. C. 2013. Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview. *Atmos. Chem. Phys.*, 13, 6239-6261.
- PALMER, P. I. & SHAW, S. L. 2005. Quantifying global marine isoprene fluxes using MODIS chlorophyll observations. *Geophys. Res. Lett.*, 32, L09805.
- WAUGH, D., INKPEN, T., HINGSTON, M., KEAST, S., MCPHERSON, J., WORTHY, D. & FORBES, G. 2010. Sable Island Air Monitoring Program Report No: 2003-2006. *Environmental Studies Research Funds*, Report No. 181, 1-56.

4. BIRD MONITORING

4.1 RATIONALE / HISTORY

Seabird monitoring observations were conducted on a relatively continuous basis at the Thebaud production platform from 1999 until 2004 by independent observers supplied by Offshore Oil and Gas Observer Program. The OGOP observers received periodic training in seabird identification from various experts including Canadian Wildlife Service (CWS) biologists. While CWS believed that these observations provided a general appreciation of seabird/platform interactions, the observations were unable to fully assess the relative distribution of seabirds around the platform since they were restricted to a single location and limited field of view (Wilhelm and Boyne 2006). As an alternative to earlier observations at a single location (i.e., platform) by OGOP observers, a vessel-based approach using transect surveys was adopted in 2005 involving systematic observations of seabirds by CWS-trained biologists along supply vessel transits to and from offshore platforms. The transect approach offered the possibility of detecting changes in density of seabirds in relation to distance from SOEP offshore manned and unmanned gas platforms off Nova Scotia. This vessel-based approach was conducted in 2007, 2008, 2010, and 2011. Analysis of these data were supplemented by the availability of vessel-based transects conducted in other areas of the Scotian Shelf (i.e., not along regular supply vessel tracks to and from SOEP platforms) by CWS observers aboard 'vessels-of-opportunity' as part of a multi-year monitoring program to document the distribution and abundance of seabirds in offshore areas of Atlantic Canada.

In 2011 EMC assessed the feasibility of installing radar instrumentation as a means to monitor seabird movements in the vicinity of a satellite platform. The assessment concluded that the installation was not feasible based on the scope of platform modifications needed, the competing work priorities for the platform and the intervention plans. An alternative approach that incorporated receivers on standby/supply vessels was implemented. One standby vessel is located at the Thebaud location; one other is used to support satellite platform interventions and this provided data for the full field.

EMC field staff look for birds during their daily surveillance checks on the offshore platforms further to SOEP's Canadian Wildlife Permit LS 2560 requirements. An annual report detailing the numbers of birds salvaged, released and deceased on the platforms, provides monitoring data on those species observed on the offshore facilities.

EMC has developed a training package and informational tools to help offshore personnel carry-out the required monitoring and reporting.

Stranded bird handling procedures were jointly developed in 2012 and 2013 with Encana after discussions and review with the CNSOPB. This protocol was developed to ensure consistent procedures are used on the offshore facilities on the Scotian Shelf. These measures include assigning offshore personnel responsible for tracking bird observations/data, directions on bird handling, and offshore personnel awareness/training. This protocol was submitted to the CNSOPB and subsequently the Canadian Wildlife Service for review along with clarification on required bird handling procedures.

4.2 GOALS

The goal of the 2017 bird monitoring component was to ensure SOEP was in compliance with the CWS permit issued under section 19 of the Migratory Birds Regulations and provide information to the regulator on the number and types of birds salvaged, released and deceased on the offshore facilities. Monitoring of tagged birds by offshore personnel should help with the evaluation of seabird abundance and behavior and how this may be affected by the presence of the platforms and flaring activities.

4.3 OBJECTIVES

The objective of the bird monitoring component of the EEM program is to provide bird observational data from platforms on the Sable Island Bank. This is undertaken in order to:

- 1) document the number of birds and species in the vicinity of the offshore facilities, by documenting those observed, salvaged, released and deceased, and
- 2) determine the extent of attraction of birds to SOEP manned and unmanned offshore platforms and support vessels.

Objective 2 has been addressed by the Acadia/Encana instrument-based automated bird monitoring study, "Assessment of Bird Interactions with Offshore Infrastructure Associated with the Oil and Gas Industry of Nova Scotia, Canada" that took place 2011- 2014. EMC's support included: VHF radio-tracking on Sable Project supply vessels, providing monitoring data related on the physically tagged gulls observed on or near the SOEP facilities (2011-2014), providing financial support for the purchase of storm petrel tracking tags (2012), and providing a flight to transport bird monitoring equipment to Sable Island in Spring 2012.

4.4 **METHODOLOGY**

Offshore operations personnel are tasked with conducting walk-arounds on the platforms and supply vessels and reporting any stranded or dead birds to the Logistics office on Thebaud. This data is compiled and a report is submitted annually to the Canadian Wildlife Service detailing numbers of all birds (oiled or not) that were captured and released as well as those deceased during the year. Table 4-1 provides the methodology for the survey.

Table 4-1: Bird Field Survey Methods

Parameter	Sampling Methodology
Survey date:	Between January 1 and December 31, 2017, surveys for
	stranded and dead birds were conducted on SOEP offshore
	platforms.
Number of	Daily (weather permitting) on Thebaud and during
Surveys	interventions on satellite platforms.
Type of	Species identification, condition (alive or dead, oiled, wet,
Sample:	lethargic, dazed), date, action taken and fate of bird were
	recorded for birds found.
Sample	No samples prepared in 2017. If a bird is found oiled,
Preparation	corpse to be packaged in aluminum foil, labeled, kept
	frozen, and may be analyzed (instructed per CWS-
	Dartmouth). In the case of birds found dead on the
	platform in numbers greater than 10 per incident, these are
	to be frozen and shipped to shore to UPEI Atlantic
	Veterinary Pathology lab for analysis.
Number of	10 (no instances of greater than 10 birds)
Samples	

4.5 **ANALYSIS/RESULTS**

No physically tagged birds were observed on SOEP facilities in 2017.

Currently, walk-arounds are conducted on the platforms and supply vessels and operators and crew are tasked with reporting any stranded or dead birds to the Logistics office on the Thebaud platform.

SOEP has been reporting data to CWS since 2007, and in 2012, the reporting format was revised to capture additional data for CWS with regards to the discovery dates, the condition of the birds and whether the bird may have died in care, was found dead, released or sent for rehab. Results for 2017 and the 6 previous years are provided in Table 4-2 below:

Table 4-2: Retrieval and Release of Birds on SOEP Thebaud and North Triumph platforms and Venture Sea and Sieme Hanne supply vessels Year 2017

	Positio	n where		Fou	nd		Ca	ptured	l Alive	!			
	species w	vere found		De	ad	Un-oiled			0	iled	Comments		
				DOA									
Date				S or		D						Action	Foto of
	Latitude	Longitude	Species	don	Oil	1					C = disti =	Action	Fate of
yy/mm/dd	(N)	(N)	(code)	ated	ed	С	Rls'd	SFR	DIC	SFR	Condition	Taken	Bird
	43 53 N	060 12	_				_						_
17/01/14		W	Dove				1				Good Condition – Bird set free		
	43 53.1	060 12.2											
17/01/18	N	W	Dove				2				Good Cond	lition – Birds S	Set Free
	43 52.2	060 11.9											
17/01/25	N	W	Dove				1				Good Con	dition – Bird S	et Free
	43 54 N	060 12.5											
17/03/13			Sanderling	1							Un-oiled,	Disposed of	at Sea
	43 52. 5	060 12.4											
17/05/11	N	W	UNKN	1							Un-oiled,	, Disposed of	at Sea
	43 42.5	060 12.1											
17/05/11	N	w	WISP	2							Un-oiled	Disposed of	at Sea
	43 51.8	060 12.4										Disposed of	
17/05/18	N	w	LHSP	1									
	43 52.4	060 13.1									Un-oiled	Disposed of	at Sea
17/05/22	N	W	LHSP	1							on oneu,	, z.sposcu c	
17,03,22	43	60 41.19		_							Good Cond	ition – Bird w	as flying
	35.47 N	W	Yellow									the Alma plat	
	33.47 N		bellied fly				_				around	tile Allila piat	101111
17/06/12			catcher				1						
	44 00 N	30 00 W									Un-oiled,	, Disposed of	at Sea
			Blackpoll										
17/06/14			Warbler	1									
47/05/44	44 00 N	30 00 W		_							Un-oiled,	, Disposed of	at Sea
17/06/14			Goldfinch	1									
	43 52 N	060 12 .1									Good Con	dition – Bird S	et Free
17/10/12		W	LHSP				1						
	43 53.2	060 12.5									Good Con	dition – Bird S	et Free
17/10/13	N	W	LHSP				1						
	43 52 N	060 12									Captured al	ive, kept in a	box with
		W									water, but	was found de	ad later
17/10/23			LHSP	1		1					that night	t. Disposed of	at sea
	43 53.6	060 13.2									Good Con	dition – Bird S	et Free
17/11/11	N	w	WISP				1						
-		1	· [1		· [
	43 54 .2	060 12									Good Cond	lition – Birds S	Set Free
17/12/09	N	W	WISP				2						
	43	060											
17/12/08	53.44 N	11.42	LHSP	1							Un-oiled,	, Disposed of	at Sea

Table 4-3: Retrieval and Release of Birds on SOEP Thebaud, Venture and North Triumph platforms and Venture Sea and Sieme Hanne supply vessels Year 2016

						Captur	ed Alive		
				ound					_
				Dead	Un	-oiled	Oil	ed*	Comments
			D						
		Tot	O		DI				
Date	Species	Tot al	A S	Oiled *	C	Rls'd	DIC	SFR	Condition Action Taken Fate of Bird
April 8,	Species	aı	ъ			Kis u	DIC	SIT	Condition Action Taken Tate of Bird
2016	LHSP	1	1						Found dead on Venture Sea supply vessel. Un-oiled.
									Found on North Triumph platform, both disposed of
April 9,	T D TTO								overboard. Not able to identify species, due to
2016 April 27,	UNKN	2	2						decomposition. Set of black wings found 6-8 inches long, on Thebaud
2016	UNKN	1	1						compression top deck south side.
May 11,	Yellow-billed	1	-						Found dead on Thebaud platform production deck, not
2016	cuckoo	1	1						oiled and no signs of trauma
May 11,	American								Alive, observed on Thebaud platform weather deck.
2016	robin	1							Flew away.
May 26, 2016	Barn swallow	1	1						Found doed on Venture Con supply vessel. Un eiled
May 27,	Black Poll	1	1						Found dead on Venture Sea supply vessel. Un-oiled. Found on Thebaud platform wellhead cellar deck,
2016	Warbler	1	1						Emaciated and un-oiled
June 6,									Found on Venture Sea supply vessel. Re-located to box
2016	LHSP	1				1			with water. Released at night and flew away.
June 25,	B 1 1								Venture Sea supply vessel. Alive and in good shape.
2016 June 27,	Brown booby	1							Noted as rare to see near Sable Island. Flew away. Found dead on North Triumph when crew landed.
2016	Osprey	1	1						Emaciated and un-oiled.
July 16,	Northern	1	-						Found on Thebaud Compression platform behind
2016	Waterthrush	1	1						emergency generator, un-oiled
July 21,									Found on Siem Hanne supply vessel. Re-located to box
2016	LHSP	1				1			with water. Released at night and flew away.
July 22,	LUCD	1				1			Found on Siem Hanne supply vessel. Re-located to box
2016 July 24,	LHSP	1				1			with water. Released at night and flew away. Found on Siem Hanne supply vessel. Re-located to box
2016	LHSP	1				1			with water. Released at night and flew away.
August 8,	Yellow					-			and the major
2016	Warbler	1	1						Found dead on Venture Sea supply vessel. Not oiled.
	Scarlet								Found on Thebaud platform cellar deck alive. Re-
August 24,	Tanager				1				located to box with some water but died shortly after and
2016		1	1		1				disposed of overboard.
November 10, 2016	Pine Grosbeak	1	1						Found on Thebaud Compression platform cellar deck. Un-oiled with an apparent broken neck.
10, 2010	Time Grosbeak	1	1						Alive, 2 observed together on Thebaud platform top
December	Cedar								deck. Birds were fine, noted as rare to see on platform.
5, 2016	Waxwing	2							Flew away.
December									Found on Siem Hanne supply vessel. Re-located to box
19, 2016	LHSP	1				1			with water. Released at night and flew away.

^{*}Additional Notes: Dovekies found in January 2017: These birds landed on the aft deck and then due to the 12' high sides on the vessel, appear that they are not able to gain enough height to clear when taking off. Birds are healthy and once picked up and released over side they had no problem.

DOAS – Disposed of at Sea. DIC – Died in Care. Rls'd – Released. SFR – Sent for Rehab.

Table 4-4: Retrieval and Release of Birds on SOEP Thebaud, Venture and North Triumph platforms and Venture Sea and Panuke Sea supply vessels Year 2015

					Captured Alive		;		
			Fo	ound					
				ead	Un-	-oiled	Oil	led*	Comments
			D						
			O		DI				
Date	Smaoina	To	A S	Oiled *	DI C	Rls'd	DIC	SFR	Condition Action Taken Fate of Bird
	Species	tal	<u>ა</u>	**	C	Kis u	DIC	SLK	
April 29 2015	Northern Waterthrush	2	2						Found Dead on Venture Platform, looked healthy and un- oiled
	vv atertinusii								Thebaud south stairwell to helideck found - Unidentifiable (small
Sept, 10 -									wings present, appears to have been preyed upon by Peregrine
2015	Unknown	1	1						Falcon possibly).
Sept, 17-	Blackpoll	1	1						Found dead on top deck of Thebaud Well Head, no signs of
2015	Warbler	1	1						being oiled or scorched Found dead on Thebaud process cellar deck outside of firewater
Sept,17 -	Silver Haired								pump enclosure. Shipped to NS Natural History Museum to
2015	Bat - female	1							Andrew Hebda. (NSM Mammal collection catalogue # 78280).
Sept,27-	Northern								Found dead on Compression cellar deck West side, laying on
2015	Waterthrush	1	1						deck, un-oiled.
Oct 9	UNKN	1				1			Panuke Sea Supply Vessel: Dry active bird appearing healthy, released immediately alive on site. 43°53.3'N, 060°13.5'W
									Panuke Sea Supply Vessel: Dry active gull appearing healthy,
Oct 12	UNGU	1				1			released immediately alive on site. 43°53.3'N, 060°13.5'W
Oct,16-	THOD	1	1						Found dead on NE stairwell of Thebaud Production deck, no sign
2015	LHSP	1	1						of being oiled or scorched. Panuke Sea Supply Vessel: Dry active gull appearing healthy,
Oct 16	UNGU	1				1			released immediately alive on site. 43°53.3'N, 060°13.5'W
Oat 16	UNKN	1				1			Panuke Sea Supply Vessel: Dry active bird appearing healthy,
Oct 16	Red-necked	1				1			released immediately alive on site. 43°53.3'N, 060°13.5'W
	Phalarope								
Oct,18-	Adult non-								Found dead on Thebaud top deck next to heli-pods, noticed injury to one wing, possibly from Falcon. Un-oiled, not
2015	breeding	1	1						scorched.
Oct 18,	Yellow								Found Dead on cellar deck North side of Thebaud in walk way.
2015	Warbler	1	1						Un-oiled not scorched.
Oct,19-	Blackpoll								Found Dead on cellar deck North side of Thebaud in walk way.
2015	Warbler	1	1						Un-oiled, not scorched.
Nov 2-	Peregrin								
2015	Falcon	1				1			Observed perched on Thebaud wellhead bridge.
Nov 5- 2015	Blackpoll Warbler	1	1						Found dead on Thebaud, no sign of trauma. Un-oiled, not scorched.
Dec 1-	Peregrin								Observed perched on Thebaud weather deck just below
2015	Falcon	1				1			heli-deck.

DOAS – Disposed of at Sea

DIC - Died in Care.

SFR – Sent for Rehab

*Oiled Birds: Both live and dead birds are to be sent to shore

Table 4-5: Retrieval and Release of Birds on SOEP Thebaud, Venture and North Triumph platforms and Venture Sea and Panuke Sea supply vessels Year 2014

						Capture	ed Alive		
				ound		•			
				ead	Un	-oiled	Oi	led*	Comments
			D O						
		То	A	Oiled	DI				
Date	Species	tal	S	*	C	Rls'd	DIC	SFR	Condition Action Taken Fate of Bird
May 18,	Seaside								Found on Compression cellar deck by Operator
2014	Sparrow	1	1		1				Dead un-oiled
									Panuke Sea on location at various Sable
									platforms (30% @ Venture and 70% @
									Thebaud) between May 7 and June 4, 2014.
									Late reporting: deck crew didn't see any more
More 7 to									than 2 dead birds per day and sometimes none
May 7 to June 4,									during the day. It was estimated that approximately 40 dead birds were found over
2014	Northern								the 4 week hitch. (20-Northern Waterthrush
hitch	Waterthrush	20	20						and 20-White throated sparrows)
									Panuke Sea on location at various Sable
									platforms (30% @ Venture and 70% @
									Thebaud) between May 7 and June 4, 2014.
									Late reporting: deck crew didn't see any more
									than 2 dead birds per day and sometimes none
May 7 to	***								during the day. It was estimated that
June 4, 2014	White								approximately 40 dead birds were found over
hitch	throated Sparrow	20	20						the 4 week hitch. (20-Northern Waterthrush and 20-White throated sparrows)
IIItCII	Sparrow	20	20						Observed on Venture Sea supply vessel, on
									location at North Triumph platform – birds
Sept 3,	Greater								appeared dazed/lethargic, after resting for a
2014	Shearwater	2				1			few hours, flew away.
Sept 23.									Found Dead on Venture Production Deck – un-
2014	Goldfinch	1	1						oiled
Sept 26	Blackpoll								Found Dead on Cellar deck of Thebaud – un-
2014	Warbler	1	1						oiled
Sept 27	Blackpoll								Found dead on the cellar deck of Thebaud in
2014	Warbler	5	5						various locations – un-oiled
Oct 1 2014	Blackpoll Warbler	1	1						Found Dead on Cellar Deck of Thebaud
Oct 12-	Peregrine Peregrine	1	1						outside the TSR – un-oiled 1 observed flying around top deck of Thebaud,
2014	Falcon	1							no other birds spotted
2017	1 alcon	1							2 observed at North Triumph Platform chasing
									and eating small sea birds, mainly STORM
Oct 12-	Peregrine								PETRELS
2014	Falcon	2							

						Capture	ed Alive	;	
				ound Dead	Un.	-oiled	Oil	led*	Comments
			D	l	Oil	Oned	OI.	icu	Comments
			O		DI				
Date	Species	To tal	A S	Oiled *	DI C	Rls'd	DIC	SFR	Condition Action Taken Fate of Bird
Date	White	tai	5			IXIS U	Dic	SIK	Observed on Thebaud deck, good condition
Oct 14-	throated								Observed on Theodata deek, good condition
2014	Sparrow	1							
									Observed on Venture Sea supply vessel, on
Oct 14-	~ 440								location at Venture – un-oiled
2014	Goldfinch	1	1						
Oct 19- 2014	Cattle Forest	1							Observed by night operator on Thebaud wellhead bridge, sleeping
Oct 19-	Cattle Egret Virginia	1							Observed resting on Thebaud production deck
2014	Rail	1							pipe support
Oct 21-	Blackpoll	1							Found dead on Thebaud heli-deck landing
2014	Warbler	1	1						South side
Oct 24									Found on Thebaud Compression platform,
2014	Shearwater	1				1			given shelter and time to rest, then released.
Oct 24	Peregrine								2 observed at Thebaud perching on wellhead
2014	Falcon	1							platform
									Observed on Panuke Sea supply vessel, on
Oat 27	Leaches								location at Thebaud. Bird appeared to perish of
Oct 27 2014	Storm Petrel	1	1						natural causes, no signs of pollution or other. Disposed of overboard.
2014	Storm retter	1	1						Small bird eaten on the forward deck of the
Oct 29									Panuke Sea supply vessel by a Peregrine
2014	UNKN	1							Falcon. Vessel was on location at Thebaud.
Oct 31	Blackpoll								Found dead on Thebaud process cellar deck
2014	Warbler	1	1						bird was singed
									Observed on Thebaud process cellar deck alive
0 . 21	701 1 11								but with singed feathers (at tips), bird was gone
Oct 31	Blackpoll	1							in the morning. Note: Peregrine Falcons also
2014	Warbler	1							observed on Thebaud at this time. Observed on Panuke Sea supply vessel, on
									location at Thebaud. Bird appeared to perish of
Nov 3	Leaches								natural causes, no signs of pollution or other.
2014	Storm Petrel	1	1						Disposed of overboard.
									Observed on Panuke Sea supply vessel, enroute
									from Thebaud Platform to Halifax. Bird
									appeared dazed, lethargic initially, was placed
									in cardboard box and given water (approx 5
									hours). When vessel arrived at Dartmouth
NT 40	**								dock, the box was opened on a grassy hillside
Nov 18	Hermit	1				1			and bird flew away within 20 minutes.
2014	Thrush	1				1			

2017 Annual Report – SOEP Offshore Environmental Effects Monitoring Program Section 4 Bird Monitoring

				ound Dead	I In-	-oiled	Oil	led*	Comments
			D	l				icu -	Comments
		То	O A	Oiled	DI				
Date	Species	tal	S	*	C	Rls'd	DIC	SFR	Condition Action Taken Fate of Bird
Dec 7	Peregrine								1 observed flying around Venture platform.
2014	Falcon	1							
Dec 19 2014	Great Blue Heron	1							1 observed flying from perch to perch on the Thebaud complex (afternoon). Appeared to be in good shape. There was high winds and some freezing rain and appeared to be taking some shelter from the weather.
									Observed on Venture Sea supply vessel, on location at Thebaud. The bird landed on board,
Dec 19	Great Blue								stayed overnight and flew away in the morning.
2014	Heron	1							It appeared to be in good condition.
Dec 26									Found dead on top deck Thebaud, looked
2014	Dovekie	1	1						healthy, un- oiled

DOAS – Disposed of at Sea

DIC – Died in Care.

Rls'd - Released.

SFR – Sent for Rehab.

Table 4-6:Retrieval and Release of Birds on SOEP Thebaud platform and Venture Sea supply vessel Year 2013

					Captured Alive						
			Found Dead		Un-oiled		Oiled*		Comments		
		T									
		О									
		t									
Б.	g :	a	_	Oiled	DI	D1 1 1	DIG	CED	G III		E . CD: 1
Date	Species	I	AS	*	C	Rls'd	DIC	SFR	Condition A	Action Taken	Fate of Bird
									Found on Thebaud platform, held in box with water and		
									died shortly after. Approximately 12 Northern		
April 4,	Northern								Waterthrush were observed and all flew away later that		
2013	Waterthrush	1			1				same day.		
June 3,	Purple								Found on Venture Sea supply vessel walking on the main		
2013	Gallinule	1				1			deck. It was left alone and was gone the next morning.		
									Found on Thebaud cellar deck. Bird appeared to perish of		
June 13,									natural causes, no signs of pollution (it was wet).		
2013	Goldfinch	1	1						Disposed of overboard.		
									Found on Thebaud deck at night. Petrel held in box with		
June 17,	Storm Petrel								water for rest. Released later that night. It flew away		
2013	(WISP)	1				1			without issue from the	platform.	•
September	Northern								Found on Thebaud wel	llhead top deck. H	Bird appeared to
11, 2013	Waterthrush	1	1						perish of natural causes, no signs of pollution. Disposed		

^{*}Oiled Birds: Both live and dead birds are to be sent to shore

2017 Annual Report – SOEP Offshore Environmental Effects Monitoring Program Section 4 Bird Monitoring

						of overboard.
October	Ipswich					Found perched on railing of Thebaud cellar deck.
10, 2013	Sparrow	1			1	Appeared in good condition and flew away.
						Peregrine Falcon observed perched on railing of Thebaud
October	Peregrine					wellhead deck. Close by were black wings (appeared to
11, 2013	Falcon	1			1	be Storm Petrel wings).
October	Ipswich					Found perched on railing of Thebaud sub cellar deck.
16, 2013	Sparrow	1			1	Appeared in good condition and flew away.
						Found on Theabud cellar deck. Bird appeared to perish of
October	Seaside					natural causes, no signs of pollution. Disposed of
21, 2013	Sparrow	1	1			overboard.
				_		Found on Thebaud compression cellar deck. Bird
October	Black and					appeared to perish of natural causes, no signs of pollution.
24, 2013	white warbler	1	1			Disposed of overboard.

DOAS – Disposed of at Sea

DIC – Died in Care.

Rls'd - Released.

SFR – Sent for Rehab.

*Oiled Birds: Both live and dead birds are to be sent to shore

Table 4-7:Retrieval and Release of Birds on SOEP Thebaud and South Venture platforms Year 2012

			Found Dead		Captured Alive)			
					Un-oiled Oiled		led*	Comments			
		T									
		О									
		t									
		a		Oile	DI						
Date	Species	1	DOAS	d*	C	Rls'd	DIC	SFR	Condition Action Taken Fate of Bird		
	BLACKPOLL								Bird appeared to perish of natural causes, no signs of		
13SEP	WARBLER	1	1						pollution or other. Disposed of overboard.		
	NOTHERN								Bird appeared to perish of natural causes, no signs of		
	WATER								pollution or other. Bird unreachable.		
20 OCT	THRUSH	1	1								
7 NOV	GOLD								Bird appeared to perish of natural causes, no signs of		
	FINCH	1	1						pollution or other. Disposed of overboard.		
	BLACKPOLL								South Venture: Birds appeared to perish of natural causes,		
14 NOV	WARBLER	2	2						no signs of pollution or other. Disposed of overboard.		
	BLACKPOLL								Bird appeared to perish of natural causes, no signs of		
20 NOV	WARBLER	1	1						pollution or other. Disposed of overboard.		
									Found one Storm Petrel on Thebaud Compression. Held		
	STORM								captive for 24hrs. Fed and nourished and released on site.		
20 NOV	PETREL	1				1			Flown away successfully.		

DOAS – Disposed of at Sea

DIC – Died in Care.

Rls'd – Released.

SFR – Sent for Rehab.

*Oiled Birds: Both live and dead birds are to be sent to shore

Table 4-8 Specimens Salvaged in 2011

Common Name	Province		ber Coll	ected	Final Disposition of Specimens Collected
		Birds	Eggs	Nests	
Blackpoll warbler	Nova Scotia	35	0	0	Disposed of overboard
Leach's Storm Petrel	Nova Scotia	15	0	0	Disposed of overboard
Goldfinch	Nova Scotia	1	0	0	Disposed of overboard
Pine Siskin	Nova Scotia	1	0	0	Disposed of overboard

In 2011, the 52 deceased birds discovered on the offshore platforms were collected mainly through the spring and fall; a few in the summer and very rarely during the winter months. Many of the birds that are reported above were not intact and presumed to have been preyed upon by at least one peregrine falcon that was spotted on the Thebaud platform in late summer and early fall.

4.6 CONCLUSIONS

EMC will continue to report the numbers of birds and species physically impacted by the presence of the offshore facilities, by documenting those salvaged, released and deceased. The number of birds found in 2017 was the same as the previous year (21) found in 2016, (17) found in 2015, (71) found in 2014, (10) found in 2013, (7) found in 2012, and (52) found in 2011. It should be noted that 16 of the 71 birds observed in 2014 were released and did not perish offshore, 6 of the 17 birds observed in 2015 were released and did not perish offshore, 9 of the 21 birds observed in 2016 were released and did not perish offshore and 11 of the 21 birds observed in 2017 were released and did not perish offshore.

It has been observed that 2017 had relatively low instances of periods of poor visibility (foggy weather) offshore, with the exception of a few days during the spring and fall. Visibility is tracked hourly in the offshore area, as transportation via helicopter is impacted greatly by fog events. SOEP was able to complete approximately 137 flight hours per month in 2017. In 2013, SOEP experienced its highest level of successful flight segments in the project's history - it averaged 155 flight hours per month due to clear weather. The decrease in bird observations may be related to clear weather periods during the spring and fall migration months, thus less attraction of birds to the lighted structures and flare.

Section 5.2.1.9 of the SOEP – EIS Vol. 3 predicted that "Lights [from work lights and gas flares] may attract migrant bird species, especially in fog and/or low cloud and rain." The 2013, 2014, 2015, 2016 and 2017 data would appear to align with this prediction.

4.7 CURRENT AND FUTURE MONITORING

EMC completed its participation in the implementation and testing of new monitoring techniques around offshore platforms in mid-2014. Dr. Phil Taylor and Dr. Rob Ronconi, Acadia University, concluded studies with Encana's Deep Panuke project on the use of instrument-based automated monitoring tools to enhance the monitoring and study of bird activities and bird attraction to offshore platforms. This technology was thought to overcome detection limitations inherent in observer-based monitoring, particularly during periods of poor visibility (ie. fog/darkness).

EMC field staff will continue to participate in the offshore monitoring of physically tagged birds in the offshore areas.

EMC understands that in the future, potential tagging may occur on Ipswich Sparrows and Storm Petrels. Should monitoring platforms be required at that time to accommodate radio tracking receivers, EMC is amenable to installing these on the Project supply vessels in order to support this potential research.

4.8 REFERENCES

Wilhelm, S.I. and A.W. Boyne (2006) Evaluation of seabird observations collected from 2001-2003 by the Oil and Gas Observer Program. Canadian Wildlife Service Technical Report Series No. 464. Atlantic Region. vii + 26 pp.

5. BEACHED SEABIRD SURVEYS

Photos: Friends of the Green Horse Society

5.1 RATIONALE

Since 1993, regular surveys for beached oiled birds have been conducted on Sable Island to monitor trends in numbers and rates of oiling in beached seabirds, and to collect specimens of contamination for gas chromatographic analysis to generically identify oil types. Results of analysis of oil samples collected during 1996-2005 have been reported in [1]. Results of beached surveys conducted during 1993-2009 are reported in [2]. Also, corpses of fulmars and shearwaters collected during the surveys have been used in a study of plastic ingestion, and the results are reported in [3 & 4]. See References, Section 8.

5.2 GOAL

By monitoring numbers and oiling rates in beached seabirds on Sable Island, industry and regulators can identify and correct potential sources of oil contamination arising from industry operations.

5.3 OBJECTIVES

There are two main objectives of the beached bird surveys:

- To monitor trends in oiling rate in beached seabird corpses; and
- To generically identify oil types found on seabird feathers and in pelagic tar.

5.4 METHODOLOGY

Zoe Lucas, biologist and long-time resident of Sable Island, conducted the beach bird surveys on Sable Island. Table 5-1 provides the methodology for the beached seabird survey.

Table 5-1: Beached Seabird Field Survey Methods

Parameter	Sampling Methodology
Survey date:	Between January 1 and December 31, 2017, eight surveys for beached seabirds were conducted on Sable Island. No survey was conducted in January, February, March and September.
Number of Surveys	8
Type of Sample:	Species identification, corpse condition and extent of oiling to be recorded for seabird specimens. When possible, the time since death to be estimated based on freshness of tissues and degree of scavenging and sandblasting. Oiling rate to be calculated using only complete or largely intact corpses (i.e. with >70% of body intact) during 2017. The presence and degree of oiling of complete corpses to be recorded as a code using a four-point scale: (0) clean plumage; (1) slight surface oiling, or <10% of the body oiled; (2) moderate oil, penetrating to the base of feathers, 10-25% oiled; (3) heavy oil, >25% oiled. Incomplete corpses, with less than 70% of the plumage present, to be categorized as Code 4.
Sample Preparation	Oil samples to be packaged in aluminum foil, labeled, kept frozen for periods ranging from one week to several months, and delivered to the laboratory for gas chromatographic analysis (Maxxam Analytics). Interpretation of GC/FID results to be conducted by MacGregor & Associates (Halifax) Ltd.
Number of Samples	0 (none in 2017)
Equipment:	Normally collected by hand using metal foil containers

5.5 ANALYSIS

Since no oiled corpses were found during 2017 surveys, no analyses of oil specimens collected from bird feathers were conducted.

Table 5-2: Analytical Method for Oiled Seabirds (none in 2017)

Parameters	Analysis Method			
HCR, MHCP, URM, URM/MHCP ratio	gas chromatograph (GC/FID)			
	gas smanagraph (Con 12)			

For oiling rate and number of clean birds/km (see Section 5, Figures 1 - 7), annual trends were first analyzed with generalized linear models (with Poisson links for densities and binomial links for oiling rate), but yielded excessive overdispersion even after corrections. Thus instead data were transformed (log transformation for densities, arcsine transformation for oiling rate) and analyzed by least squares regression. Statistically significant trends (P < 0.05) are marked with an asterisk (*).

Laboratory QA/QC

Maxxam Analytics is a CALA facility (Canadian Association for Laboratory Accreditation).

5.6 RESULTS

During 2017, 473 beached bird corpses were collected on Sable Island. Alcids accounted for 73.2% of total seabird corpses recovered (compared with 28.9% in 2016). Of the 473 corpses, 247 (52.2%) were complete (i.e. with >70% of body intact, Codes 0-3). Table 5-3 shows totals & linear densities for clean complete corpses (Code 0) for winter (November-April) and summer (May-October), and annual oiling rate based on complete corpses (i.e., with >70% of body intact, Codes 0 - 3).

The overall oiling rate for all species combined (based on complete corpses, Codes 0 to 3) was 0% (compared with 0% in 2016, 0.5% in 2015 and 3.2% in 2014). In particular, the oiling rate for alcids was 0% (compared with 0% in 2016, 1.7% in 2015 and 7.9% in 2014). Also, none of Code 4 (incomplete corpses) showed any evidence of oiling.

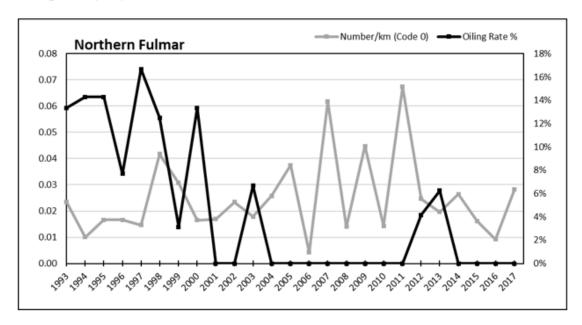
Table 5-3: Beached Seabird Corpses Collected on Sable Island During 2017

Oiling scale:

- (0) Complete corpse, clean plumage
- (1) Complete corpse, slight surface oiling, or <10% of the body oiled
- (2) Complete corpse, moderate oil, penetrating to the base of feathers, 10-25% oiled
- (3) Complete corpse, heavy oil, >25% oiled
- (4) Incomplete corpse, less than 60% of the plumage present

Beached seabird corpses collected on Sable Island during 2017. Totals & linear densities for clean complete corpses (Code 0) for winter (November-April) and summer (May-October) and annual oiling rate based on complete corpses (i.e. with >70% of body intact, Codes 0-3).

Bird species &	Total ¹	Code 0	Code 0	Code 0	Code 0	Oiling
groups	number	number	number	number/km	number/km	rate %
	corpses	Winter	Summer	Winter	Summer	
Northern Fulmar	16	8	37	0.0415	0.0208	0
Shearwater	57	2	34	0.0104	0.1009	0
Northern Gannet	14	6	8	0.0311	0.0237	0
Larus Gulls	25	16	2	0.0829	0.0059	0
Alcids ²	346	153	7	0.7927	0.0208	0
Other species ³	15	4	0	0.0207	0	0
Common & Thick-	257	144	6	0.7461	0.0178	0
billed Murres ⁴						
Dovekie ⁴	11	0	0	0	0	0


¹ Codes 0 - 4 combined (i.e., complete and incomplete corpses).

² All alcid species combined (Razorbill, Atlantic Puffin, Common and Thick-billed Murre, Dovekie, Black Guillemot and unidentified large alcids).

³ Other species: one Common Loon, one Double-crested Cormorant, four Leach's Stormpetrel, one Canada Goose, one White-winged Scoter, two Common Tern, and five Blacklegged Kittiwake - none were oiled.

⁴ Common & Thick-billed Murres and Dovekies are included in the overall totals for Alcids.

Figure 9.1. Northern Fulmar Corpses/km: F(1,23)=0.57, P=0.46 Oiling Rate: F(1,23)=22.63, P<0.0001*

Figure 9.2. Shearwaters Corpses/km: F(1,23)=0.01, P=0.93

Oiling Rate: F(1,23)=10.81, P<0.0001*

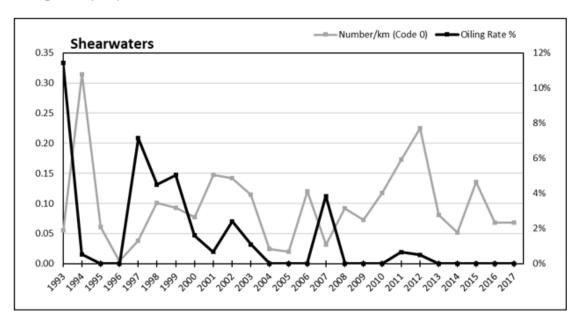


Figure 9.3. Northern Gannet Corpses/km: F(1,23)=0.44, P=0.52 Oiling Rate: F(1,23)=10.68, P=0.0034*

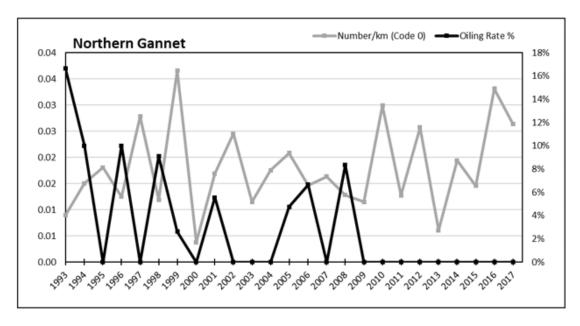


Figure 9.4. Larus Gulls

Corpses/km: F(1,23)=0.43, P=0.52 Oiling Rate: F(1,23)=18.56, P=0.0003*

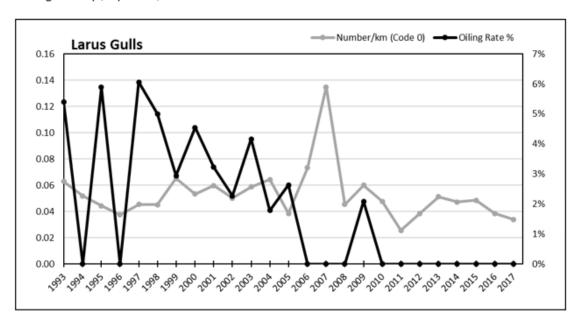


Figure 9.5. Alcids (all species combined) Corpses/km: F(1,23)=0.27, P=0.61

Oiling Rate: F(1,23)=69.02, P<0.0001*

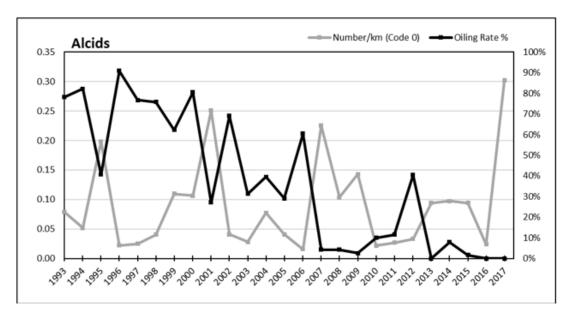


Figure 9.6. Common & Thick-billed Murres

Corpses/km: F(1,23)=0.67, P=0.42 Oiling Rate: F(1,23)=29.53, P<0.0001*

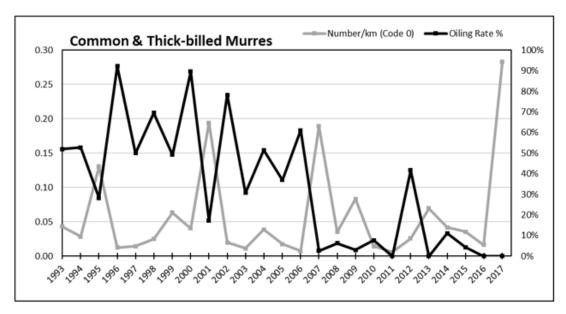
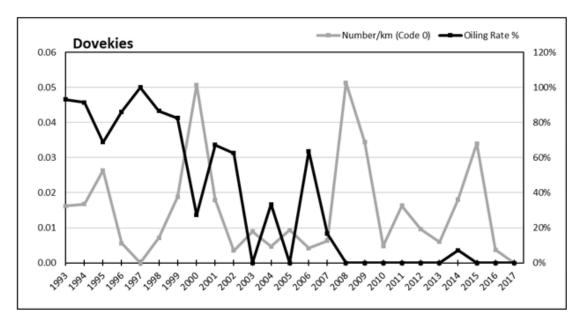



Figure 9.7. Dovekie

Corpses/km: F(1,23)=0.45, P=0.51 Oiling Rate: F(1,23)=63.10, P<0.0001*

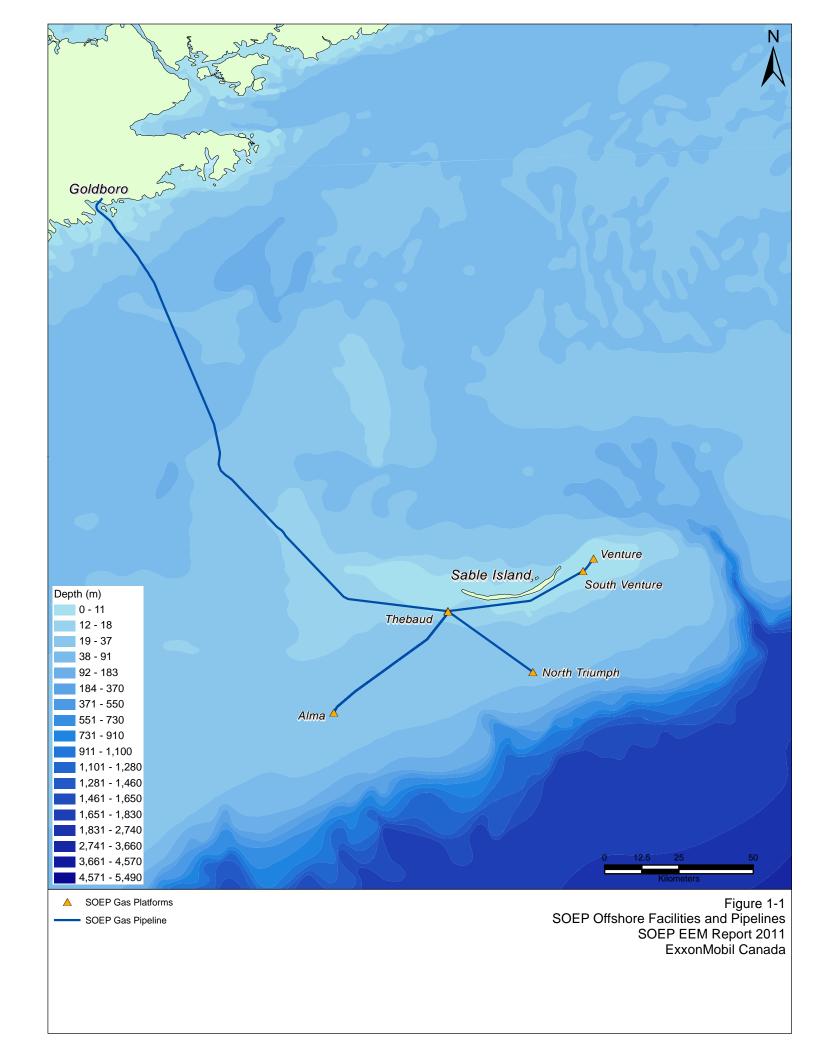
5.7 CONCLUSIONS

The overall oiling rate for all species combined (based on complete corpses, Codes 0 to 3) was 0.0%. The oiling rate for alcids was 0.0% (it was also 0.0% in 2016).

5.8 REFERENCES

- [1] Lucas, Z. and C. MacGregor. 2006. Characterization and source of oil contamination on the beaches and seabird corpses, Sable Island, Nova Scotia, 1996-2005. Marine Pollution Bulletin 52: 778-789.
- [2] Lucas, Z., A. Horn and B. Freedman. 2012. Beached bird surveys on Sable Island, Nova Scotia, 1993 to 2009, show a recent decline in the incidence of oiling. Proceedings of the Nova Scotian Institute of Science 47, Part 1, 91-129.
- [3] Bond, A.L., J.F. Provencher, P.-Y. Daoust and Z.N. Lucas. 2014. *Plastic ingestion by fulmars and shearwaters at Sable Island, Nova Scotia, Canad*a. Marine Pollution Bulletin 87: 68-75.
- [4] Holland, E.R., P-Y. Daoust, Z. N. Lucas, and M. L. Mallory. 2017. Anthropogenic debris and pathology of fulmars and shearwaters beached on Sable Island, Nova Scotia, Canada. In review.

7. SUMMARY AND CONCLUSIONS


The summary and conclusions for 2017 EEM Program specific components are as follows:

- TPH (PW chemical characterization samples) values at the Thebaud, Venture and South Venture platforms (Table 2.4; Figure 2.4) were well below the 24-hour threshold limit (i.e., 44 mg/L) for TPH specified in the OWTG (2010). The 2017 TPH values at the three platforms have continued the general trend toward relatively stable lower values in recent years (since 2010)
- Test results since 2005 show that chemical levels can vary widely over time and location in large part due to varying reservoir characteristics.
- Besides differences in reservoir (i.e., geotechnical) characteristics, other factors which may contribute to variation in TPH concentrations in PW samples include time of sampling, efficiency of the onboard treatment system, and operational upsets.
- Further to SOEP's Canadian Wildlife Permit LS 2560 requirements, an annual report detailing the numbers of birds salvaged, released and deceased on the platforms provided monitoring data on those species observed on the offshore facilities.
- The number of birds found in 2017 was the same as the previous year (21) found in 2016. It has been observed that 2017 had relatively low instances of periods of poor visibility (foggy weather) offshore, with the exception of a few days during the spring and fall. 11 of the 21 birds observed in 2017 were released and did not perish offshore.
- The annual concentrations of SO2, H2S, PM2.5 and NOx are well below Provincial, Federal and international air quality regulations. The annual mean O3 concentration is within the Canada maximum acceptable region but is a known long-range pollutant associated with continental outflow and therefore unlikely to be related to O&G production emissions.
- The 2017 air emissions report indicated that the "elevated events" in O3, SO2, PM2.5 were associated with LRT continental outflow, and not from O&G operations or associated with ocean biogenic fluxes. The observed NOx, H2S and some SO2 is likely to be related to multiple sources, e.g. flaring on the O&G platforms and ship emissions. However, these concentrations are extremely low and well below any regulations.

2017 Annual Report - Offshore Environmental Effects Monitoring Program Section 6 Summary and Conclusions

- The overall oiling rate for all species combined (based on complete corpses, Codes 0 to 3) was 0%. The oiling rate for alcids was 0% (compared with 0% in 2016).
- None of the 247 complete corpses sampled in 2017 or the 226 incomplete corpses collected (Code 4) were observed to be oiled.

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM	1998-2000		2001-2003	
Component	Program	Observations	Program	Observations
Benthic Boundary Layer	Frequency: baseline and semi-annual Location: 38 stations per field Parameters: SPM, barium in SPM	No evidence of drill waste floc as modeled by bblt model following 3 years of study Specialized analytical equipment not readily available	frequency based on drilling activity	No change
Sediment Toxicity	Frequency: baseline and semi-annual Location: 8 stations at Venture, North Triumph, South Venture, 10 stations at Thebaud, and 5 Gully stations Parameters: Amphipod survival Echinoderm fertilization Bioluminescence (Microtox)	Microtox test showed low sensitivity and sea urchins fertilization produced inconsistent results Amphipod tests correlated with TPH concentration in sediments; continued with amphipod tests	Frequency: annual Location: 14 stations per field Parameter: amphipod survival	Amphipod survival tests continue to correlate with TPH concentration in sediments. No change in protocol other than species change due to unavailability of original test organism.
Sediment Chemistry	Frequency : baseline and semi-annual Location : 38 stations per field, 5 Gully stations Parameter : full (24) metal scan, grain size, C ₆ -C ₃₂ hydrocarbons, BTEX,TIC, TOC, ammonia and sulphide.	No statistical significant difference detected with distance or survey times except in barium and total petroleum hydrocarbons (TPH) (C ₁₁ -C ₃₂) No change in: - Sediment metal concentration (other than Ba); - Carbon concentrations; BTEX; or - Sediment grain size	Frequency: annual Location: In 2001, dropped mid-field stations (i.e., 5, 6, 7.5, 9, 10, 12 km rings) and increased axes sampling at 250 and 500 m rings. Resolution not improved with increased sampling, so dropped minor axes stations at 250 and 500 m. In 2002 – 22 stations per field, 5 Gully Parameter: Analyze for key indicators Ba, TPH, ammonia and sulphide.	Venture stations back to baseline at 250 m Thebaud and North Triumph stations showed elevated TPH and barium out to 500 m along direction of prevailing current.
Benthic Habitat and Benthos	Frequency: six months Location: 38 Stations per field Parameters: Epibenthic megafauna at Thebaud and Venture by photography (still and video) Epibenthic megfauna and infauna at North Triumph	Characterized drill cuttings piles for recovery assessment in conjunction with storm scour evaluations Collected samples of cuttings piles Added ROV inspection during EEM surveys to evaluate habitat and communities	Frequency (biota): annual Frequency (cuttings piles): quarterly ⁴ and storm event based Locations: 22 stations per field Parameter: Epibenthic megafauna at Thebaud and Venture by photography (still and video) Epibenthic megfauna and infauna at North Triumph	No statistical change in epibenthic megafauna at Venture, Thebaud and North Triumph Observed apparent enrichment effect of infauna at North Triumph (increase in species numbers, abundance and diversity) at 250 and 500 m during/after drilling. Returned to background levels twelve months after drilling completed. Cuttings piles have been relatively stable at Venture and Thebaud,; No cuttings pile created at North Triumph
Fish and Fish Habitat	Not part of original EEM program as fish and fish habitat were not scoped as a VEC	Added to EEM Program as a result of requirement under HADD Authorization	Frequency: Annual Location: Tier I platforms and marine pipeline (biannual) Parameter: ROV inspection of growth, percent coverage After four years, the colonization of the platform jackets and protective mattresses generated approximately ten times the original biomass of attached flora and fauna, yielding a net gain in production of 68,618 kg The platforms and subsea pipeline have also created a 'reef effect' by attracting aggregations of a variety of mobile fish and invertebrate species.	No change

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM	199	P8-2000	2001-2003	
Component	Program	Observations	Program	Observations
Taint and Body Burden	Frequency: Quarterly³ (mussels) six months¹(scallops) Locations: Mussels moored at 250, 500, 1000, 2000, 5000, 15000 and 20000 m from Thebaud, Venture and North Triumph, plus two moored reference stations Wild scallops collected from beds closest to each platform Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes Sensory Evaluations	Integrity of moorings were problematic due to sediment transport (burial), interference with supply vessel operations and pipeline construction. Changed mooring depth locations from surface and bottom positions to mid water as operations changed from drilling to producing Reduced mooring locations to platform and near field	Frequency: Quarterly ⁴ (mussels) Annual ² (snow crabs) annual ² (scallops) Location: Collect surface mussel samples from Venture and Thebaud wellhead leg and Thebaud nearest to overboard discharge caisson (C3) leg Kept the 1000 m mussel mooring at Venture. Parameters: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes Sensory Evaluations	Adapted program to include other potential sentinel species No evidence of taint due to hydrocarbons in scallops and mussels. No apparent health effects on mussels. In 2001 included snow as potential sentinel species crabs at North Triumph. No evidence of hydrocarbons therefore discontinued sampling in 2002. In 2002 included Jonah crabs as potential sentinel species at Thebaud. Found evidence of drilling mud (Novaplus) in tissue. Additional Jonah crabs collected in 2003 for analysis. Continue wild scallops at closest beds
Produced Water	Not in production phase	Collected discharge samples at 'end of pipe' (near mouth of discharge caisson at Thebaud) and carried out bioassay toxicity testing using Microtox, 3 -spine stickleback and sea urchin. Estimated Zone of Influence (ZOI) of Monethylene Glycol (MEG) discharged at Thebaud	Frequency: Once in 2001 Location: Thebaud, in receiving water adjacent to caisson Parameter: Toxicity on three-spine stickleback, sea urchin and Microtox. Observed no apparent toxic effects of produced water based on field observations and laboratory testing of samples collected near the mouth of the discharge caisson at Thebaud	Insufficient volumes of produced water to justify further sampling and analysis
Marine Mammals and Seabirds	Frequency: Daily Location: Strategic placement of independent fishery observer on all major construction vessels; full-time at Thebaud when space-permitted. Parameter: Regular observations of marine mammals and seabirds from facilities	Strategic placement on drilling rigs; full-time observer coverage on Thebaud during Operations phase No major incidents during construction.	Frequency: Daily Location: Thebaud Parameter: Regular observations of marine mammals and seabirds from platform	In Spring 2003, full time observers on Thebaud were discontinued. Observers were placed on vessels and other platforms as required Few incidents reported of effects of operations (i.e., flaring, attraction to lights, collisions, etc) on seabirds, results to-date, inconclusive.; and No obvious avoidance of platforms by marine mammals. No observer data after May 2003
Air Quality	Frequency: Continuous on 4-6 week change out Location: Sable Island – Weather Station Parameter: Particulates, VOCs, NOx	No changes	In 2001 discontinue because sandy salt environment corroded equipment and interfered with filters	With support from the offshore oil and gas industry, Environment Canada installed real time air quality samplers at Sable Island Weather Station. Initiated platform-based twice daily visual monitoring of flare plume at Thebaud.
Vessel Traffic	Development and adherence to the Codes of Practice restricts air and vessel traffic near the Gully, Sable Island and Country Island	No change	No change	No change
Noise	During pile driving at Venture (1998) and pipe laying (1999) near Country Island and DREA ambient noise report (1999)	The loudest measured noise levels associated with offshore construction activities (i.e. pile driving and pipe-laying) were predicted not to effect whales in the Gully and had no observed effects on tern breeding on Country Island	No monitoring	No routine monitoring of marine noise was carried out near platforms during drilling or operations

Scallops in cages only
 North Triumph/Alma locations only
 Thebaud only (caged)
 Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM		2005		2006
Component	Program	Observations	Program	Observations
Sediment Toxicity	Frequency: annual Location: 3 stations at South Venture, 3 stations at Thebaud and 4 Gully stations at MPA boundary Parameters: Amphipod survival Echinoderm fertilization Bioluminescence (Microtox)	Amphipod tests <i>Rhepoxynius abronius</i> No toxic responses since 2003, as correlated to sediment toxicity back to baseline	Discontinued - see 2005 observations	N/A
Sediment Chemistry	Frequency: annual Location: 3 stations at Thebaud, 3 stations at South Venture and 4 Gully stations Parameter: TPH, barium, strontium, mercury, ammonia, sulfides and aluminum.	Sediment chemistry back to baseline condition	Discontinued - see 20005 observations	N/A
Benthic Habitat and Benthos	Frequency: annual Location: Thebaud Parameters: cutting pile estimation	ROV inspection during EEM surveys to evaluate habitat and communities: -no commercial or at-risk species of fish or crustacean species identifiedjacket legs and cross members generally 100% covered in marine growth - mostly blue musselslarge schools of cunners near platform No cuttings pile evident in 2005.	Frequency: annual Location: Thebaud and pipeline corridor in Strait of Canso Parameters: cutting pile estimation, Analysis of videotape to identify distribution of associated marine life with focus on commercial and species-at-risk	Client supplied ROV video taken of the cutting pile and platform. No cuttings pile evident. No marine species at risk observed. Cod school observed around platforms. Cunner also observed but an inshore species and not commercial species
Fish Health	Not part of original EEM program as not scoped as a VEC. Frequency: Annual Location: Thebaud: Parameters: mixed-function oxygenase (MFO), gross pathology and histopathology of cod.	Using a weight of evidence approach, comparable results were obtained at both sites indicating that the health of cod which are possibly aggregating at Thebaud, was similar to that at the reference site.	Discontinued - see 2005 observations	N/A
Fish and Fish Habitat	Not part of original EEM program as fish and fish habitat were not scoped as a VEC. Frequency: Opportunistic/ supplied UW videotape acquired by ROV camera Location: 26" export pipeline Parameter: Fish density near platform jacket and along randomly selected exposed sections of subsea pipeline to shore	Several small redfish were observed on the undersides of span sections of the 26" export pipeline. Numerous snow crabs were observed on and near exposed sections of the pipeline (maximum density KP 20 -80) ~ 12 snow crabs/km). Large schools of cunners (a non-commercial fish species) were observed in the immediate vicinity of the Thebaud platform.	Frequency: Opportunistic/ supplied UW videotape acquired by ROV camera Location: 26" export pipeline Parameter: Fish density near platform jacket and along selected exposed sections of subsea pipeline to shore	No species at risk or corals observed along pipeline Colonization of pipeline as in previous years

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM		2005		2006
Component	Program	Observations	Program	Observations
Taint and Body Burden	Frequency: Annual mussels and scallops Locations: Jacket legs at Thebaud for mussels and nearest bed for scallops Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes Sensory Evaluations (scallop only)	Higher TAH attributed to biogenic (phytoplankton) in mussels and scallops TAH concentration found in Western Bank, Superstore (Control) and Sable Bank scallops as well as Thebaud and Superstore mussels due to phytoplankton. Sensory evaluation by triangle test showed no significant difference in the odour and flavour of the Sable Bank scallops as compared to the Superstore scallops.	Scallop sampling/sensory evaluation discontinued - see 2005 observations Body burden of mussels continued on Thebaud jacket legs.	N/A Logistical issues prevented collection of mussels
Produced Water	Frequency: Annual for toxicity, semi annual for chemistry. Location: Thebaud Parameter: trace metal composition, HC concentration, IC ₅₀ and aquatic LC ₅₀ toxicity testing, as required by OWTG (2002).	TPH well below OWTG limits Chemistry data consistent between sampling events. Microtox, sea urchin fertilization and stickleback test proved toxic results Produced water quality variable due to variability in contributions from other platforms.	Frequency: Semi annual for chemistry, Annual for toxicity Location: Thebaud, Alma, South Venture and Venture Parameter: trace metal composition HC concentration, IC ₅₀ and acquatic LC ₅₀ toxicity testing as required by OWTG (2002).	Produced water at Thebaud, Venture and Alma have elevated levels of some metals and each platform is relatively consistent in chemical signature from year to year. The total petroleum hydrocarbon concentrations in the various samples of produced water at Thebaud, Venture and Alma were well below the OWTG limits of 30 mg/L (30 days) and 60 mg/L (24-hour) for oil in water. The results of the 96 hour LC ₅₀ and IC ₅₀ tests indicate that produced water from Thebaud, was slightly more toxic than in 2006 for stickleback. For stickleback Venture had higher toxicity than Thebaud which was higher than South Venture. These platforms are also toxic to Mictotox and sea urchins. It is surmised that the cause of the toxicity may be due to petroleum hydrocarbons. Given the hydrodynamic marine environment near Sable Island, the chemical constituents of produced water will likely be diluted to background levels within a few metres of the mouth of the discharge caisson.
Marine Mammals and Seabirds	Frequency: Annual for marine noise level monitoring and marine mammal observations. Four seabird surveys/year (CWS surveys) Monthly beach survey Location: 250m, 500m, and 1000m from the Venture platform and one (1) reference station near western boundary of Gully MPA CWS seabird surveys from supply boats on transects between Thebaud platform and shorebase and reference areas. Oiled beach seabirds studies ongoing on Sable Island	Underwater acoustic environment dominated by noise from standby/supply vessels. Results indicated that underwater noise levels generated by coincident drilling/production operations attenuated to below threshold for adverse effects on marine mammals (180 dB re 1 µPa) 250-300 m from sound source (i.e., Venture platform) No obvious evidence of attraction to platforms. Results, to-date inconclusive. No petroleum hydrocarbon or condensate from any NS offshore installations were found on oiled seabirds	Frequency: Marine mammals only observation during pile driving for new compression platform at Thebaud. Monthly beached bird surveys Opportunistic transect surveys Location: Seabird surveys from supply boats on transects between Thebaud platform and shorebase and reference areas. Oiled beach seabirds studies ongoing on Sable Island	A few whales and dolphins(no species-at-risk) observed around construction. There was no evidence that seabirds were attracted to the SOEP offshore platform. Distribution of seabirds appeared to be independent of proximity to Sable Island. Results, to-date, inconclusive. Of the 14 oiled birds collected from Sable Island beach and analyzed, none of the 13 samples contained light or mid-range distillate fuels or condensates that would be typical of oils produced on SOEP facilities. One sample was inconclusive as to its source in the region, however there were no spills from SOEP facilities for several months prior to the contaminated specimen.
Air Quality	Frequency: Realtime continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	Air monitoring data from this project has shown that Sable island can be affected by long range transport of air pollution from the continental mainland. Monitoring program and observations of various emission producing activities on and around the island do not yet allow Environment Canada to confirm whether the effects of offshore activities can be measured on the island.	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	Flare data collected and provided to EC. Awaiting data from EC for further analysis and reporting (M. Hingston, EC. pers.comm.) Preliminary analysis to date by EC indicates that all pollutant (i.e., SO2, NOx) concentrations measured on Sable Island are at much lower levels than in Halifax with the exception of PM2.5 which is believed to be high on Sable Island due to sea-salt aerosols

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM	2007		20	008
Component	Program	Observations	Program	Observations
Sediment Toxicity	Discontinued since 2005 (see 2005 observations) DFO conducted sediment samples at Thebaud and The Gully 2006 and 2007	N/A No toxic responses (based on amphipod survival) were observed.	Discontinued since 2005 (see 2005 observations)	N/A
Sediment Chemistry	Discontinued since 2005 (see 2005 observations) DFO conducted sediment samples at Thebaud and The Gully 2006 and 2007	N/A Barium concentrations slightly above baseline levels out to 500 m from Thebaud platform at along direction of prevailing current. TPH concentrations at baseline levels.	Discontinued since 2005 (see 2005 observations)	N/A
Benthic Habitat and Benthos	Frequency: annual Location: Thebaud Parameters: cutting pile estimation, Analysis of videotape to identify distribution of associated marine life with focus on commercial and species-at- risk	No cuttings evident in 2007	Frequency: annual Location: Thebaud Parameters: cutting pile estimation, Analysis of videotape to identify distribution of associated marine life with focus on commercial and species-at-risk	No ROV video taken in 2008 of the cutting pile Colonization on pipeline and Strait as in previous reports. No species at risk observed.
Fish Health	Detailed fish health analysis discontinued since 2005 (see 2005 observations) Summarize fish health indices obtained from 2007 DFO bottom trawl groundfish survey for selected sampling station(s) on Sable Island Bank. Delineate and characterize thermal plume from compression platform. Investigate possible attraction of fish to thermal plume.	N/A DFO was unable to provide fish condition factor data (as a potential measure of fish health) since there were no random bottom trawl sampling stations in close proximity to any of the SOEP offshore platforms in 2007 (M. Showell, DFO, pers.comm.). Continued discussions with COOGER on meaningful and achievable approach	Detailed fish health analysis discontinued since 2005 (see 2005 observations) Summarize fish health indices obtained from 2007 DFO bottom trawl groundfish survey for selected sampling station(s) on Sable Island Bank. Collaborate with DFO COOGER to characterize PW plume using chemical and microbial evaluation Delineate and characterize thermal plume from compression platform. Investigate possible attraction of fish thermal plume.	N/A DFO was unable to provide fish condition factor data (as a potential measure of fish health) since there were no random bottom trawl sampling stations in close proximity to any of the SOEP offshore platforms in 2007 (J. Emberley, DFO, pers.comm.). Continued discussions with COOGER on meaningful and achievable approach Attempted in field; unsuccessful due to equipment problems No ROV video surveys conducted in area of compression platform in 2008

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM		2007	20	08
Component	Program	Observations	Program	Observations
Fish and Fish Habitat	Frequency: Opportunistic/ supplied UW videotape acquired by ROV camera Location: 26" export pipeline Parameter: Fish density near platform jacket and along randomly selected exposed sections of subsea pipeline to shore	No ROV video collected at platform or along exposed sections of subsea pipeline to shore in 2007	Frequency: annual Location: Thebaud Parameters: Analysis of videotape to identify distribution of associated marine life with focus on commercial and speciesat-risk Frequency: Opportunistic/ supplied UW videotape acquired by ROV camera Location: 26" export pipeline Parameter: Fish density near platform jacket and along randomly selected	No ROV video taken in 2008 of the cutting pile No change in pattern of colonization on exposed sections of pipeline to shore and Canso Strait from most recent previous survey. No species at risk or corals observed.
Taint and Body Burden	Frequency: Annual mussels Locations: Jacket legs at Thebaud for mussels Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes	Aliphatic hydrocarbons in mussel tissues re-confirmed (as all previous years) to be biogenic in origin.	Frequency: Annual mussels Locations: Jacket legs at Thebaud for mussels Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes	Mussel samples could not be collected for logistical reasons (i.e. sea conditions, availability of fast rescue craft etc)
Produced Water	Frequency: Semi-annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture and Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002).	Produced water at Thebaud, Venture, South Venture and Alma have elevated levels of some metals and each platform is relatively consistent in chemical signature from year to year. The total petroleum hydrocarbon concentrations in the various samples of produced water at Thebaud, Venture, South Venture and Alma were well below the OWTG limits of 30 mg/L (30 days) and 60 mg/L (24-hour) for oil in water. The results of the 96 hour LC ₅₀ and IC ₅₀ tests indicate that produced water from Thebaud, Venture, South Venture and Alma is toxic. It is surmised that the cause of the toxicity may be due to petroleum hydrocarbons. Given the hydrodynamic marine environment near Sable Island, the chemical constituents of produced water will likely be diluted to background levels within a few metres of the mouth of the discharge caisson.	Frequency: Semi-annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture and Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002).	Produced water at Thebaud, Venture and Alma are very high in some metals. Mercury level found at all but Alma platforms. Cadmium levels only metal to exceed CCME guidelines once at Thebaud. South Venture samples, when received by lab were too old to analyze for chemistry in 2008. The total petroleum hydrocarbon concentrations in the various samples of produced water at Thebaud, Venture and Alma were well below the OWTG limits of 30 mg/L (30 days) and 60 mg/L (24-hour) for oil in water. The results of the 96 hour LC ₅₀ and IC ₅₀ tests indicate that produced water from Thebaud, Venture, South Venture and Alma is toxic. (High salinity is considered a factor as in previous years.)
Marine Mammals and Seabirds	Frequency: Monthly beached bird surveys Opportunistic transect surveys Location: Thebaud CWS seabird surveys from supply boats on transects between Thebaud platform and shorebase and reference areas. Oiled beach seabirds studies ongoing on Sable Island	Based on the limited seasonal dataset collected in 2007, there is insufficient information to state conclusively whether the SOEP platforms attract seabirds based on analysis of transect data. Interpretation of seabird observation data in the vicinity of the SOEP platforms is complicated by the nearby presence of Sable Island, which supports colonies of many bird species. Several predominantly land-based birds likely died of trauma caused by collisions with superstructures on the Thebaud platform (October 10 2007) and on a DFO research vessel (October 7 2007). Of the three oil samples collected from Sable Island beach and analyzed, none contained light or mid-range distillate fuels or condensates that would be typical of oils produced on SOEP facilities.	Frequency: Monthly beached bird surveys Opportunistic transect surveys Location: Thebaud CWS seabird surveys from supply boats on transects between Thebaud platform and shorebase and reference areas. Oiled beach seabirds studies ongoing on Sable Island	No avoidance of the supply vessel route or an attraction to the SOEP platform was evident. None of the 8 oiled bird samples collected on Sable Island contained petroleum hydrocarbons characteristic of those originating from SOEP facilities. Bilge and fuel oil ranges could have been from any vessel. Several predominantly land-based birds likely died of trauma caused by collisions with superstructures on the Thebaud platform during at least 3 separate incidents between October 7-14 2008.

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM	2007		2008	
Component	Program	Observations	Program	Observations
Air Quality	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	Flare plume was typically either clear or very light gray (#1 or #2 on NSDOEL Smoke Chart). There appeared to be a general improvement in flare plume colour. Awaiting data from EC for further analysis and reporting (M. Hingston, EC. pers.comm.) Preliminary analysis to date by EC indicates that all pollutant (i.e., SO2, NOx) concentrations measured on Sable Island are at much lower levels than in Halifax with the exception of PM2.5 which is believed to be high on Sable Island due to sea-salt aerosols	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	Flare plume was typically either clear or very light gray (#1 on NSDOEL Smoke Chart). There appeared to be a general improvement in flare plume colour. The monitoring program and current observations of various emissions producing activities on and around the island do not yet allow for confirmation as to whether the effects of offshore oil and gas activities can be measured on the island. H ₂ S and SO ₂ peaks was hard to attribute to any particular source based upon current information. PM2.5 which is believed to be high on Sable Island due to sea-salt aerosols

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM	2009		2010		
Component	Program	Observations	Program	Observations	
Sediment Toxicity	Discontinued since 2005 (see 2005 observations)	N/A	Discontinued since 2005 (see 2005 observations)	N/A	
Sediment Chemistry	Discontinued since 2006 (see 2005 observations)	N/A	Discontinued since 2005 (see 2005 observations)	N/A	
Benthic Habitat and Benthos	Frequency: annual Location: Thebaud Parameters: cutting pile estimation, Analysis of videotape to identify distribution of associated marine life with focus on commercial and species-at- risk	No cuttings evident since 2005. Using ROV imagery over the years has allowed general observations on community succession and qualitative comparisons across years showing that the platforms have attracted aggregations of a variety of mobile fish and invertebrate species.	Discontinued since 2009	N/A	
Fish Health	Detailed fish health analysis discontinued since 2005 (see 2005 observations)	N/A	Detailed fish health analysis discontinued since 2005 (see 2005 observations)	N/A	
Fish and Fish Habitat	Frequency: Opportunistic/ supplied UW videotape acquired by ROV camera Location: 26" export pipeline Parameter: Fish density near platform jacket and along randomly selected exposed sections of subsea pipeline to shore	No change in pattern of colonization on exposed sections of pipeline to shore and Canso Strait from most recent previous survey. No species at risk or corals observed. Using ROV imagery over the years has allowed general observations on community succession and qualitative comparisons across years showing that the subsea pipelines have attracted aggregations of a variety of mobile fish and invertebrate species and that the pipeline does not act as a barrier to movement for commercially important lobster and crab stocks.	Discontinued since 2010	N/A	

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM	2009		20	10
Component	Program	Observations	Program	Observations
Taint and Body Burden	Frequency: Annual mussels Locations: Jacket legs at Thebaud for mussels Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes	Aliphatic hydrocarbons in mussel tissues re-confirmed (as all previous years) to be biogenic in origin. Higher concentration of biogenic hydrocarbons in filter feeding mussels indicates that the platforms may promote phytoplankton growth due to local nutrient enrichment. Mussels from Thebaud exhibit slightly higher levels of vanadium, strontium, and cadmium relative to control mussels	Frequency: Annual mussels Locations: Jacket legs at Thebaud for mussels Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes	Aliphatic hydrocarbons in mussel tissues re-confirmed (as all previous years) to be biogenic in origin. Higher concentration of biogenic hydrocarbons in filter feeding mussels indicates that the platforms may promote phytoplankton growth due to local nutrient enrichment. Mussels from Thebaud exhibit slightly higher levels of vanadium, strontium, and cadmium relative to control mussels
Produced Water	Frequency: semi annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture and Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002). Note: ExxonMobil's lab contractor changed in mid-2009, therefore two different commercial chemistry laboratories were used to analyze the produced water samples.	Produced water at Thebaud, Venture, Alma and South Venture have elevated levels of some metals. The highest metal values recorded at each platform were for boron, barium, iron, lithium, and strontium. Of these metals, the Theabud and venture platforms discharged the highest concentrations in comparison with the sample events at the other platforms. The total petroleum hydrocarbon concentrations in the various samples of produced water at Thebaud, Venture and Alma were well below the OWTG limits of 30 mg/L (30 days) and 60 mg/L (24-hour) for oil in water. The results of the 96 hour LC ₅₀ and IC ₅₀ tests indicate that produced water from Thebaud, Venture, South Venture and Alma is toxic. It is surmised that the cause of the toxicity may be due to petroleum hydrocarbons. The COOGER dispersion study concluded that "considering the present volume of produced water released, and the expected rates of dilution following discharge, based on microbiological analysis the toxicity of produced water from Venture/Thebaud offshore platforms is not considered an environmentally relevant factor of concern."	Frequency: semi annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture and Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002).	Produced water at Thebaud, Venture, Alma and South Venture have elevated levels of some metals. The highest metal values recorded at each platform were for boron, barium, iron, manganese, and strontium. Of these metals, the Theabud and venture platforms discharged the highest concentrations in comparison with the sample events at the other platforms. The total petroleum hydrocarbon concentrations in the various samples of produced water at Thebaud, Venture and Alma were below the OWTG limits 60 mg/L (24-hour) for oil in water. The results of the 96 hour LC ₅₀ and IC ₅₀ tests indicate that produced water from Thebaud, Venture, South Venture and Alma is toxic. It is surmised that the cause of the toxicity may be due to petroleum hydrocarbons and possibly salinity. While petroleum hydrocarbon compounds such as PAHs and phenols and heavy metals such as lead are known to be toxic, they are likely to have contributed little to the overall toxicity of PW due to their low concentrations. Concentrations of other key non-organic PW constituents (i.e., barium, boron, iron, lead, zinc, strontium, and ammonia) have been relatively low in recent years. Two potentially toxic constituents, iron and ammonia, would more likely have contributed to the high toxicity observed (DFO COOGER, 2010).

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM		2009	20	010
Component	Program	Observations	Program	Observations
Marine Mammals and Seabirds	Frequency: Monthly beached bird surveys Opportunistic transect surveys Location: Thebaud CWS seabird surveys from supply boats on transects between Thebaud platform and shorebase and reference areas. Oiled beach seabirds studies ongoing on Sable Island	Species showing higher densities within the platform area and/or within 0-10km of platforms include terns, Heerring Gull, Black-legged Kittiwake, and Northern Gannet. Species showing lower densities within the platform area and/or within 0-10km of platforms include Dovekie, Northern Fulmar, Greater Shearwater, murres, and storm petrels. Effects of platform attraction or avoidance by seabirds are inconclusive due to potentially confounding effects of seabird habitat associations, which were not assessed in the 2009 analysis. Of the six oil samples collected from Sable Island beach and analyzed, none contained light or mid-range distillate fuels or condensates that would be typical of oils produced on SOEP facilities. The relatively steady decrease in percent oiling rate of seabird species from 2000 to 2009 suggests measures to reduce illegal oil discharges from vessels has resulted in a reduction in seabird oiling events.	Frequency: Monthly beached bird surveys Opportunistic transect surveys Location: Thebaud CWS seabird surveys from supply boats on transects between Thebaud platform and shorebase and reference areas. Oiled beach seabirds studies ongoing on Sable Island	 Survey effort was increased during winter periods in 2010/2011. Overall seabird densities were equal between 2010/2011 and 2006-2009 periods (4.03 birds/km2) For areas within 25 km of platforms and comparison between 2010/2011 and 2006-2009 periods: Overall bird density showed no significant changes within seasons During winter periods Dovekie densities were higher and Northern Fulmar densities were lower in 2010/2011 During summer periods fulmar and storm-petrel densities were lower and tern densities were higher in 2010 During autumn periods, Great Shearwater densities were lower in 2010, but this likely reflects the timing of the survey which occurred after the peak fall migration period. Of the four oil samples collected from Sable Island beach and analyzed, none contained light or mid-range distillate fuels or condensates that would be typical of oils produced on SOEP facilities. The relatively steady decrease in percent oiling rate of seabird species (overall) from 2000 to 2010 suggests measures to reduce illegal oil discharges from vessels has resulted in a reduction in the seabird oiling events in the Sable Island area.
Air Quality	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	Flare plume was typically either clear or very light gray (#1 or #2 on NSDOEL Smoke Chart). There appeared to be a general improvement in flare plume colour. The monitoring program and current observations of various emissions producing activities on and around the island do not yet allow for confirmation as to whether the effects of offshore oil and gas activities can be measured on the island. H ₂ S and SO ₂ peaks was hard to attribute to any particular source based upon current information. PM2.5 which is believed to be high on Sable Island due to sea-salt aerosols The EC Sable Island Air Monitoring Program has produced some useful results in its first 6 years. Data from Sable Island is also being used to improve air quality modeling scenarios and to validate air quality models.	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	The air quality monitoring program and past observations of various emission-producing activities on and around the island do not yet allow for confirmation as to whether the effects of offshore oil and gas activities can be measured on the island. EMC is participating in an ESRF funded study led by Environment Canada and Dalhousie University entitled "Data Display and Source Apportionment of Volatile Organic Compounds and Particulate Matter on Sable Island". This project will provide regulators, industry and researchers with necessary data to evaluate the impacts attributable to contaminant emissions to ambient air from petroleum related activities.

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM		2011		2012
Component	Program	Observations	Program	Program
Sediment Toxicity	Discontinued since 2005 (see 2005 observations)	N/A	Discontinued since 2005 (see 2005 observations)	N/A
Sediment Chemistry	Discontinued since 2006 (see 2005 observations)	N/A	Discontinued since 2006 (see 2005 observations)	N/A
Benthic Habitat and Benthos	Discontinued since 2010 (see 2009 observations)	N/A	Discontinued since 2010 (see 2009 observations)	N/A
Fish Health	Detailed fish health analysis discontinued since 2005 (see 2005 observations)	N/A	Detailed fish health analysis discontinued since 2005 (see 2005 observations)	N/A
Fish and Fish Habitat	Discontinued since 2010 (see 2009 observations)	N/A	Discontinued since 2010 (see 2009 observations)	N/A

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM	2011			2012
Component	Program	Observations	Program	Program
Taint and Body Burden	Frequency: Annual mussels Locations: Jacket legs at Thebaud for mussels Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes	 Ten years of monitoring the uptake of hydrocarbons in mussels has shown that the presence of aliphatic hydrocarbons is attributable primarily to biogenic hydrocarbons generated by phytoplankton. Higher concentration of biogenic hydrocarbons in filter feeding mussels indicates that the platforms promote phytoplankton growth. Polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons, and PCBs were below detectable levels (0.05 mg/kg, 15 mg/kg, and 0.05 μg/g respectively) in both the control and Thebaud mussels. With the exception of a slight increase in cadmium and strontium, and lower levels of some other metals (aluminum, arsenic, boron, copper, iron, manganese, mercury, selenium, and zinc), total metal concentrations in mussels from the Thebaud platform were similar to those measured in mussels from a reference location. Sensory evaluations conducted up until 2001 showed that any odour and taste difference was attributable to the condition of the Control mussel samples. 	Discontinued since 2012 (see 2011 observations). Will initiate mussel analyses in 2015.	N/A
Produced Water	Frequency: annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture and Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002 & 2010).	 TPH levels in produced water samples for toxicity analyses were below the OWTG (2010) limit (44 mg/L over 24-hrs). PW at all SOEP platform locations was interpreted as being 'toxic' based on 2011 bioassay results of EMC samples. Test results over this period clearly show that toxicity levels can vary widely over time and location in most part due to variation in reservoir characteristics. High salinity levels (up to 207 ppt) may also have contributed to the toxicity observed in samples although toxicity continued to occur in concentrations diluted to normal salinity values in bioassay tests. Further, toxicity occurring at the higher concentrations was likely due in many cases to a combination of both salinity and petroleum hydrocarbons. High toxicity of produced water samples from SOEP platforms is not considered an environmentally relevant factor of concern based on findings in a 2010 DFO COOGER research study. The COOGER study also concluded that potential contaminants in the relatively small PW discharges from SOEP platforms are diluted rapidly to no-effects concentration levels within metres of the mouth of the discharge caisson located below the sea surface. 	Frequency: annual for chemistry, annual for toxicity Location: Thebaud, Alma Parameter: trace metal composition and HC concentration, as required by OWTG (2002 & 2010).	 With one exception, TPH levels in produced water samples for toxicity analyses were below the OWTG (2010) limit (44 mg/L over 24-hrs). PW at all SOEP platform locations was interpreted as being 'toxic' based on 2012 bioassay results of EMC samples. Test results over this period clearly show that toxicity levels can vary widely over time and location in most part due to variation in reservoir characteristics. High salinity levels (up to 147 ppt) may also have contributed to the toxicity observed in samples although toxicity continued to occur in concentrations diluted to normal salinity values in bioassay tests. Further, toxicity occurring at the higher concentrations was likely due in many cases to a combination of both salinity and petroleum hydrocarbons. High toxicity of produced water samples from SOEP platforms is not considered an environmentally relevant factor of concern based on findings in a 2010 DFO COOGER research study. The COOGER study also concluded that potential contaminants in the relatively small PW discharges from SOEP platforms are diluted rapidly to no-effects concentration levels within metres of the mouth of the discharge caisson located below the sea surface. The potential for cumulative environmental impacts related to the discharge of PW from SOEP offshore platforms is also considered a low risk due to the low density of operational platforms and the low intensity of other marine activities such as commercial fishing, marine transportation, military activity, tourism, etc. (DFO, 2012) on Sable Island Bank in the past, present, and in the foreseeable future.

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM	2011		2012		
Component	Program	Observations	Program	Program	
Marine Mammals and Seabirds	Frequency: Monthly beached bird surveys Opportunistic transect surveys Location: Thebaud CWS seabird surveys from supply boats on transects between Thebaud platform and shorebase and reference areas. Oiled beach seabirds studies ongoing on Sable Island	 Overall seabird densities were higher in 2011 SOEP area compared to Scotian Shelf reference surveys 2006-2010, likely owing focus on winter surveys in 2011 when some seabird species are highly abundant. Dovekies were encountered most frequently during watches (12.3% of watches), accounted for 37% of all bird sightings, and had the highest average densities of 2.04 birds per km². Northern Fulmars densities in 2011 were approximately one third of the numbers that are typical in winter on the Scotian Shelf. During 2011, the corpses of 413 beached fulmars, shearwaters, gannets, Larusgulls, and alcids were collected on Sable Island. Fulmars and shearwaters accounted for 67.6% of total seabird corpses recovered, and alcids comprised 22.5%. The highest oiling rate for a seabird group, 11.5%, was observed in alcids. Six samples of oil were collected in 2011, and likely represented four separate discharge events. None of the six samples contained light or mid-range distillate fuels, or condensates that would be typical of oils produced on offshore gas facilities such as the SOEP processing platforms off Sable Island. 	Frequency: Monthly beached bird surveys Surveillance surveys by offshore operators Annual Radio-tracking of birds via receivers on supply boats Location: Thebaud 2 Supply vessels Monetary and logistical upport of Acadia/Encana instrument-based automated bird monitoring study, "Assessment of bird-human interactions at offshore installations" Oiled beach seabirds studies ongoing on Sable Island	 During 2012, the corpses of 606 beached fulmars, shearwaters, gannets, larusgulls, and alcids were collected on Sable Island. Shearwaters accounted for 57.6% of total seabird corpses recovered, and alcids comprised 26.2%. The highest oiling rate for a seabird group, 40.4%, was observed in alcids. Seventeen samples of oil were collected in 2012, and likely represented five separate discharge events. Of the 17 samples collected from the feathers of birds and the beach, 8 contained fuel oils in the mid-range distillate (or marine diesel) range. Marine diesel is commonly used by most vessels, including vessels associated with the offshore energy industry. None of the samples contained light distillate fuels or condensates that would be typical of oils produced on offshore gas facilities such as SOEP processing platforms offshore Sable Island. There were no spills reported from any of the vessels supporting the Sable Project during 2012. Further to SOEP's Canadian Wildlife Permit LS 2560 requirements, an annual report detailing the numbers of birds salvaged, released and deceased on the platforms provided monitoring data on those species observed on the offshore facilities. Acadia/Encana bird monitoring study scheduled to complete in 2014. 	
Air Quality	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	 Flare plume was typically either clear or very light gray (#1 or #2 on NSDOEL Smoke Chart). Based on results reported in 2009, the monitoring program and past observations of various emission producing activities on and around Sable Island do not yet allow for confirmation as to whether the effects of offshore oil and gas activities can be measured on the Island. EMC is participating in an ESRF funded study led by Environment Canada and Dalhousie University entitled "Data Display and Source Apportionment of Volatile Organic Compounds and Particulate Matter on Sable Island". This project will provide regulators, industry and researchers with necessary data to evaluate the impacts attributable to contaminant emissions to ambient air from petroleum related activities. Nova Scotia Environment has compiled audited air quality monitoring data for the last few years and provided this information to the offshore Operators. The Operators are currently discussing the future data analysis options with the Federal and Provincial environment agencies. Analysis of any air quality exceedences or anomalies measured on the island in recent years will be the focus of a future submission related to this report. 	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	 Flare plume was typically either clear or very light gray (#1 or #2 on NSDOEL Smoke Chart). Kingfisher Environmental Health Consultants (KEHC) conducted data analysis and graphing of air quality and meteorological data from 2010/2011, identified spikes in air monitoring data while cross referenced these to wind direction/wind speed. The objective was to determine potential correlation with a particular facility's operations, if required. The data acquired by the monitoring station on Sable Island lacked sufficient completeness to be considered adequate for a valid statistical analysis. Because of the paucity of data it was difficult to conduct seasonal analysis or compare the data from both years. It appears that the only air pollutant that may be influenced by O&G production around Sable Island is NOx, by virtue of the 3rd highest NOx concentrations in both 2010 and 2011. Elevated PM2.5 concentrations could be a consequence of sea salt spray and further investigations of the PM2.5 chemistry and/or O&G operations would need to be conducted to confirm this. 	

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM		2013	2014		
Component	Program	Observations	Program	Observations	
Sediment Toxicity	Discontinued since 2005 (see 2005 observations)	N/A	Discontinued since 2005 (see 2005 observations)	N/A	
Sediment Chemistry	Discontinued since 2006 (see 2005 observations)	N/A	Discontinued since 2006 (see 2005 observations)	N/A	
Benthic Habitat and Benthos	Discontinued since 2010 (see 2009 observations)	N/A	Discontinued since 2010 (see 2009 observations)	N/A	
Fish Health	Detailed fish health analysis discontinued since 2005 (see 2005 observations)	N/A	Detailed fish health analysis discontinued since 2005 (see 2005 observations)	N/A	
Fish and Fish Habitat	Discontinued since 2010 (see 2009 observations)	N/A	Discontinued since 2010 (see 2009 observations)	N/A	
Taint and Body Burden	Discontinued since 2012 (see 2011 observations). Will initiate mussel analyses in 2015.	N/A	Discontinued since 2012 (see 2011 observations). Initiated mussel analyses in 2015.	N/A	

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM	2013			2014
Component	Program	Observations	Program	Observations
Produced Water	Frequency: annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002 & 2010).	below Offshore Waste Treatment Guidelines (OWTG) (2010) oil-in-water concentration limits at three SOEP platforms – Thebaud, Alma and South Venture. Venture was shut-in during 2013.	Frequency: annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002 & 2010).	 Total Petroleum Hydrocarbon daily average values were well below Offshore Waste Treatment Guidelines (OWTG) (2010) oil-in-water concentration limits at all SOEP platforms. Annual PW characterization samples taken at Thebaud, Venture, Alma and South Venture platforms in 2014 are considered 'toxic' based on results of a variety of toxicity bioassays. Test results since 2005 show that chemical and toxicity levels vary widely over time and location in large part due to varying reservoir characteristics. Besides differences in reservoir characteristics, factors which contribute to variation in TPH concentrations in PW samples include time of sampling, efficiency of the onboard treatment system, and operational upsets. Sand production in the reservoir has occasionally shown to influence the effectiveness of the treatment systems. Iron and ammonia levels vary over time, again related to which wells are producing and geotechnical factors as mentioned above. Toxicity of produced water samples from SOEP platforms is not considered an environmentally relevant factor of concern based on findings in a DFO COOGER research study (2010) which found that potential contaminants in the relatively small PW discharges from SOEP platforms are diluted rapidly to no-effects concentration levels within tens of metres of the subsurface discharge caisson.

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM	2013		2014	
Component	Program	Observations	Program	Observations
Marine Mammals and Seabirds	Frequency: Monthly beached bird surveys Surveillance surveys by offshore operators Annual Radio-tracking of birds via receivers on supply boats In 2013: Radar monitoring of bird interactions near the flare @ the Pt. Tupper Fractionation plant Location: Thebaud 2 Supply vessels Parameter: Logistical support of Acadia/Encana instrument-based automated bird monitoring study, "Assessment of bird interactions with offshore infrastructure associated with the oil and gas industry of Nova Scotia, Canada" Oiled beach seabirds studies ongoing on Sable Island	 During 2013, the corpses and fragments of 461 beached seabird corpses were collected on Sable Island. Fulmars and shearwaters accounted for 25.8% of total corpses recovered, and alcids comprised 55.5%. The overall oiling rate for the 461 birds was <0.5% — a single bird (one of 16 Northern Fulmar corpses). The 2013 oiling rate for alcids (all species combined) was markedly lower than that observed in 2012 (i.e. 0% compared with 40.4%). This is the first time in 21 years (since beginning the beached seabird survey program in 1993) that the annual oiling rate for alcids was 0%. There were no spills reported from any of the vessels supporting the Sable Project during 2013. EMC supported the Acadia/Encana instrument-based automated bird monitoring study by providing platforms (2 supply vessels) on which to install radio tracking receivers, and participation of field staff (on supply vessels and platforms) in the monitoring of physically tagged birds in the offshore areas. EMC also provided an on-land access point to monitor the flare from its fractionation plant facility in Point Tupper, NS (Acadia/Encana Study). Following 8 monitoring evenings, during different seasons and weather conditions, radar images to be analyzed for bird interactions.(results pending as at 03/2015) Further to SOEP's Canadian Wildlife Permit LS 2560 requirements, an annual report detailing the numbers of birds salvaged, released and deceased on the platforms provided monitoring data on those species observed on the offshore facilities. Acadia/Encana bird monitoring study to be completed in 2014. 	Frequency: Monthly beached bird surveys, as able. Surveillance surveys by offshore operators Location: Sable Island Offshore Platforms 2 Supply vessels Beached (oiled) seabirds studies ongoing on Sable Island	 The overall oiling rate for all species combined (based on complete corpses, Codes 0 to 3) was <3.2%. A total of six oiled corpses were recovered in 2014, and all were alcids. Alcids accounted for 54% of total corpses collected and the oiling rate for this species was 7.9% (compared to 0% in 2013). The collection of the six oiled bird corpses occurred during the first week of February, and samples of oiled feathers were collected from five of the corpses. The samples were determined to be moderately weathered Heavy Fuel Oil most typical of residuals or sludge from fuel tanks. EMC will continue to report the numbers of birds and species physically impacted by the presence of the offshore facilities, by documenting those salvaged, released and deceased. The number of birds found in 2014 was up from previous years (71) found in 2014, (10) found in 2013, (7) found in 2012, (52) found in 2011 and (30) found in 2010. It should be noted that 16 of the 71 birds observed in 2014 were released and did not perish offshore.

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)

^{4 -} Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM	2013		2014		
Component	Program	Observations	Program	Observations	
Air Quality	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSDOEL Scale readings of flare colour	 Flare plume was typically clear with very few occasions observing very light gray (#1 or #2 on NSDOEL Smoke Chart). Kingfisher Environmental Health Consultants (KEHC) conducted data analysis and graphing of air quality and meteorological data from 2013, identified spikes in air monitoring data while cross referenced these to wind direction/wind speed. The objective was to determine potential correlation with a particular facility's operations, if required. Data completeness was excellent for PM2.5 (87%) and O3 (93%) during 2012. The data completeness for NOx (73%), NO2 (72%) and NO (74%) were below the NAPS accepted data completeness of 75%, but are close enough to be acceptable for statistical analysis. Air monitoring data acquired in the 2012 year indicates that there were four events where the NOX air emissions 'spike' threshold (1-hr period) was exceeded. Investigation of these spikes revealed that one out of the four 'spikes' was possibly due to O&G operations around Sable Island. The two highest daily average PM2.5 concentrations (September 22nd and December 22nd) were aligned with airflow from the south, which aligns with the North Triumph O&G production facility. It was also seen that PM2.5 in 2012 showed a spread directional dependence from the WSW, SW, SE, ESE and E for PM2.5 concentrations above 20 μg/m3, which aligns with multiple platforms. Elevated PM2.5 concentrations could be a consequence of sea salt spray and further investigations of the PM2.5 chemistry and/or O&G operations would need to be conducted to confirm this. It is unlikely that the Sable O&G production had any influence on the three elevated daily average O3 concentrations seen in 2012. 	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSDOEL Scale readings of flare colour	 Flare plume was typically clear with very few occasions observing very light gray (#1 or #2 on NSDOEL Smoke Chart). The most important feature of the air quality data acquired on Sable Island for 2014 is that there was one operational threshold breach for H2S (3.4 ppbv, 1-hr period; threshold at 3.11 ppb) on August 7. This threshold breach was likely a result of a short-term acid gas flaring issue on the Deep Panuke natural gas production facility (Encana communication). There were no breaches of the National Air Quality Standards, Canada Ambient Air Quality Objectives (CAAQO) or Canada Wide Standard for any of the air pollution metrics contained in this report. Wind rose analysis showed that the average wind vector for 2014 was 252° which is consistent with the known prevailing winds from the SW advecting over the Scotian shelf. Spikes in NOx, PM2.5 and O3 in 2014 originated from known source regions in the Ohio valley, Ontario, Quebec, NE US and Nova Scotia prior to arriving on Sable Island. There is intriguing evidence that the spikes in NMHC on May 26, June 9 and June 23 through 28 are associated with marine biogenic emissions and neither continental outflow or O&G production operations. 	

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM	2015		2016		
Component	Program	Observations	Program	Observations	
Sediment Toxicity	Discontinued since 2005 (see 2005 observations)	N/A	Discontinued since 2005 (see 2005 observations)	N/A	
Sediment Chemistry	Discontinued since 2006 (see 2005 observations)	N/A	Discontinued since 2006 (see 2005 observations)	N/A	
Benthic Habitat and Benthos	Discontinued since 2010 (see 2009 observations)	N/A	Discontinued since 2010 (see 2009 observations)	N/A	
Fish Health	Detailed fish health analysis discontinued since 2005 (see 2005 observations)	N/A	Detailed fish health analysis discontinued since 2005 (see 2005 observations)	N/A	
Fish and Fish Habitat	Discontinued since 2010 (see 2009 observations)	N/A	Discontinued since 2010 (see 2009 observations)	N/A	

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM		2015		2016		
Component	Program	Observations	Program	Observations		
Taint and Body Burden	Frequency: Annual mussels Locations: Jacket legs at Thebaud for mussels Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes	 Ten years of monitoring the uptake of hydrocarbons in mussels has shown that the presence of aliphatic hydrocarbons is attributable primarily to biogenic hydrocarbons generated by phytoplankton. Higher concentration of biogenic hydrocarbons in filter feeding mussels indicates that the platforms promote phytoplankton growth. Polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons, and PCBs were below detectable levels (0.05 mg/kg, 15 mg/kg, and 0.05 μg/g respectively) in both the control and Thebaud mussels. Total metal concentrations in mussels from the Thebaud platform were generally similar to those measured in mussels from a reference location (control mussels) in 2015 	Discontinued since 2016 (see 2015 observations)	N/A		
Produced Water	Frequency: annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture, Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002 & 2010).	 Total Petroleum Hydrocarbon daily average values were well below Offshore Waste Treatment Guidelines (OWTG) (2010) oil-in-water concentration limits at four SOEP platforms – Thebaud, Alma and South Venture and Venture. Annual PW characterization samples taken at Thebaud, Alma and South Venture and Venture platforms in 2015 are considered 'toxic' based on results of a variety of toxicity bioassays. Test results since 2005 show that chemical and toxicity levels vary widely over time and location in large part due to varying reservoir characteristics. Besides differences in reservoir characteristics, factors which contribute to variation in TPH concentrations in PW samples include time of sampling, efficiency of the onboard treatment system, and operational upsets. Sand production in the reservoir has occasionally shown to influence the effectiveness of the treatment systems. Toxicity of produced water samples from SOEP platforms is not considered an environmentally relevant factor of concern based on findings in a DFO COOGER research study (2010) which found that potential contaminants in the relatively small PW discharges from SOEP platforms are diluted rapidly to no-effects concentration levels within tens of metres of the subsurface discharge caisson. 	Frequency: annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture, Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002 & 2010).	 Total Petroleum Hydrocarbon daily average values were well below Offshore Waste Treatment Guidelines (OWTG) (2010) oil-in-water concentration limits at four SOEP platforms – Thebaud, Alma and South Venture and Venture. Annual PW characterization samples taken at Thebaud, Alma and South Venture and Venture platforms in 2016 are considered 'toxic' based on results of a variety of toxicity bioassays. Test results since 2005 show that chemical and toxicity levels vary widely over time and location in large part due to varying reservoir characteristics. Besides differences in reservoir characteristics, factors which contribute to variation in TPH concentrations in PW samples include time of sampling, efficiency of the onboard treatment system, and operational upsets. Sand production in the reservoir has occasionally shown to influence the effectiveness of the treatment systems. Toxicity of produced water samples from SOEP platforms is not considered an environmentally relevant factor of concern based on findings in a DFO COOGER research study (2010) which found that potential contaminants in the relatively small PW discharges from SOEP platforms are diluted rapidly to no-effects concentration levels within tens of metres of the subsurface discharge caisson. 		

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM	2015		2016		
Component	Program	Observations	Program	Observations	
Marine Mammals and Seabirds	Frequency: Monthly beached bird surveys, as able. Surveillance surveys by offshore operators Location: Sable Island Offshore Platforms 2 Supply vessels Beached (oiled) seabirds studies ongoing on Sable Island	 The overall oiling rate for all species combined (based on complete corpses, Codes 0 to 3) was 0.5%. One oiled corpse were recovered in 2015, it was an alcid. Alcids accounted for 58.4% of total corpses collected and the oiling rate for this species was 1.7% (compared to 7.9% in 2014). The single oiled bird corpse occurred during April, and a sample of oiled feathers was collected. Analysis of the oil determined it to be a weathered mixture of Heavy Fuel Oil and Lube Oil, and very typical of a long haul commercial vessel running on Heavy Fuel Oil (e.g. container vessel, bulk carrier, etc.) having discharged engine room bilge oil either directly or after storage in a slop tank EMC will continue to report the numbers of birds and species physically impacted by the presence of the offshore facilities, by documenting those salvaged, released and deceased. The number of birds found on Sable Assets in 2015 was down from previous years (17) found in 2015, (71) found in 2014, (10) found in 2013, (7) found in 2012, and (52) found in 2011. 	Frequency: Monthly beached bird surveys, as able. Surveillance surveys by offshore operators Location: Sable Island Offshore Platforms 2 Supply vessels Beached (oiled) seabirds studies ongoing on Sable Island	 The overall oiling rate for all species combined (based on complete corpses, Codes 0 to 3) was 0% (compared with 0.5% in 2015 and 3.2% in 2014). In particular, the oiling rate for alcids was 0% (compared with 1.7% in 2015 and 7.9% in 2014). None of the 98 complete corpses were oiled Of the 51 incomplete corpses (Code 4) one—an Atlantic Puffin, comprised of wings, tail and feet, and found in January—showed a trace of oil on the tail. Since the oiling rate is based on complete corpses, this specimen is not represented in the reported oiling rate of 0% for alcids. Analysis of the oil determined it to be engine room bilge, possibly from a coastal or supply vessel running on Marine Diesel EMC will continue to report the numbers of birds and species physically impacted by the presence of the offshore facilities, by documenting those salvaged, released and deceased. The number of birds found in 2016 was up slightly from the previous year (21) found in 2016, (17) found in 2015, (71) found in 2014. These trends seem to be related to documented clear weather periods during the spring and fall migration months. 	

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Table 1-4 History of SOEP EEM Program 1998-2016

VEC / EEM		2015		2016
Component	Program	Observations	Program	Observations
Air Quality	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSDOEL Scale readings of flare colour	 Flare plume was typically clear with very few occasions observing very light gray (#1 or #2 on NSDOEL Smoke Chart). Kingfisher Environmental Health Consultants (KEHC) conducted data analysis and graphing of air quality and meteorological data from 2015, identified spikes in air monitoring data while cross referenced these to wind direction/wind speed. The objective was to determine potential correlation with a particular facility's operations, if required. Due to NSE ceasing air quality monitoring management of the NOx, H2S, SO2, O3, NOx and BAM PM2.5 equipment, there was no available data for these air emission metrics for the whole of 2015. Supplemental PM2.5 data was available from October through to the end of 2015 from a TSI DRX instrument. Ultrafine and coarse particle number counts were also measured from October through to the end of 2015. The most important feature of the 2015 air emissions report is that the spikes in PM mass and particle number concentrations were associated with LRT continental outflow, and not from O&G operations or associated with ocean biogenic fluxes. The mean PM2.5 for the 3-months of 2015 was similar in concentration to previous air emissions reports. 	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSDOEL Scale readings of flare colour	 Flare plume was typically clear with very few occasions observing very light gray (#1 on NSDOEL Smoke Chart), only 2 occasions observing dark gray (#3 on NSDOEL Smoke Chart). Kingfisher Environmental Health Consultants (KEHC) conducted data analysis and graphing of air quality and meteorological data from 2016, identified spikes in air monitoring data while cross referenced these to wind direction/wind speed. The objective was to determine potential correlation with a particular facility's operations, if required. There were no threshold or air quality standard breaches for O3 in 2016. However, there was a spike in H2S of 6.01 ppbv on 17/07/16. This H2S spike was above the operating threshold value of 3.11 ppbv. However, it was well below the 1-hr Nova Scotia air quality objective of 30 ppbv. Scrutiny of the air mass back trajectories for this day showed that air flow passed over both the Deep Panuke and Thebaud platforms preceding and during observations on Sable Island. On October 5, 2016 there was an elevated measurement of NOx of 7.16 ppbv. This happened a few days after the ExxonMobil field wide maintenance shutdown. The air flow during the elevated event observations was directly over the Thebaud platform. Therefore, it could be a possible source. However, NOx level was below the operational spike threshold set at 17 ppbv and well below the Canada Ambient Air Quality Objective of 213 ppbv.

^{1 -} Scallops in cages only2 - North Triumph/Alma locations only3 - Thebaud only (caged)4 - Thebaud location only

Appendix for Section 2

Produced Water Sampling and Analysis Procedures - SGS Laboratories

Collection of Produced Water:

The samples that are collected directly from the discharge pipe should be sampled into the bottles supplied by the laboratory to ensure the integrity of the samples.

Produced Water / Filtration of Produced Water / Sub-Sampling Procedures / Salinity, pH, Oxygen

N/A to laboratory

Nutrients

The nutrient samples that are taken for ExxonMobil are to be analysed for Ammonia and

TKN – 60 ml amber bottle filled approximately 80%.

Inorganics (SPM)

N/A to laboratory

Metals

The following are the bottles needed for metals analysis:

1X250 ml plastic bottle filled approximately 80%.

Organics

The bottles required for BTEX/TPH are 2x40ml glass amber vials (vials must be filled to the top and contain no headspace) and 1X1L amber glass bottle (filled approximately 90%).

Methods and method summaries of analysis are available upon request.

Quality Control

Blank samples can be supplied by the client to run as samples within the laboratory. They will be treated the same as all other samples.

Field and Trip blanks can be supplied to the client upon request and can be run as actual samples.

SGS follows a very stringent QA/QC Program with the analysis of duplicates, method blanks, surrogates, spikes and certified reference materials where applicable.

General Info on Sampling / Preparing to go to the field / Locating Site Stations / Field Notes / Observations

N/A to laboratory

Sampling Equipment Containers

The following is what the Produced Water for ExxonMobil has been analysed for in the past as well as bottles required:

250 ml metals 60 ml TKN 2X40 ml vials TPH/BTEX 1X1L amber glass 500 ml plastic

Ammonia+Ammonium (N) (mg/L), T. Kjeldahl Nitrogen (as N mg/L), Mercury (mg/L),

Aluminum (mg/L), Arsenic (mg/L), Barium (mg/L), Boron (mg/L), Cadmium (mg/L),

Cobalt (mg/L), Chromium (mg/L), Copper (mg/L), Iron (mg/L), Magnesium (mg/L), Manganese (mg/L), Molybdenum (mg/L), Nickel (mg/L), Phosphorus (mg/L), Lead (mg/L), Antimony (mg/L), Selenium (mg/L), Tin (mg/L), Strontium (mg/L), Sulphur (mg/L), Thorium (mg/L), Uranium (mg/L), Vanadium (mg/L), Zinc (mg/L), F1 (C6-C10)-water (ug/L), F1 (C10-C16)-water (ug/L), F1 (C16-C34)-water (ug/L), F1 (C34-C50)-water (ug/L), pH

Sampling Collection Methods

N/A to laboratory

Preservation / Holding Times

CHC will not allow any preservatives on flights offshore. Preservatives will be added upon receipt at the laboratory, if necessary.

Analytical Methods

BTEX/TPH – CCME Metals – ICP-MS Mercury – Cold Vapour Atomic Absorption Ammonia – SM4500-N C TKN – SM4500-NH3 G

Other Considerations

N/A to laboratory

Page 1 of 1

REPORT OF ANALYSIS - PRODUCED WATER

CLIENT: ExxonMobil Canada, 500 Sable Road, Highway 316, Goldboro, NS B0H 1L0

CLIENT REFERENCE NO.: SO#4502466480 WO#00522529CA

SGS JOB/SAMPLE NO.: EMC-2565 DATE SAMPLED: November 9, 2017

SAMPLE DESCRIPTION: Produced Water TIME SAMPLED: 1445

SAMPLE SOURCE: Thebaud Platform SAMPLED BY: R. MacDonald

METAL PREP: (Total or Dissolved): Total

DATE RECEIVED: November 10, 2017

DATE REPORTED: December 13, 2017

<u>TEST</u>	<u>METHOD</u>	Detection Limit (mg/L)	RESULT	<u>SMC</u>
Ammonia+Ammonium (N) (mg/L)	SM4500-NH3 G	0.1	29	20112272
T. Kjeldahl Nitrogen (as N mg/L)	SM4500-NORG D	0.4	NA	20112278
Mercury (mg/L)	SM3112 B	0.000026	< 0.000026	20112276
Aluminum (mg/L)	SM3125	0.005	0.417	20112272
Antimony (mg/L)	SM3125	0.002	< 0.002	20112272
Arsenic (mg/L)	SM3125	0.002	0.004	20112272
Barium (mg/L)	SM3125	0.005	6.25	20112272
Boron (mg/L)	SM3125	0.005	0.485	20112272
Cadmium (mg/L)	SM3125	0.000017	0.00003	20112272
Cobalt (mg/L)	SM3125	0.001	< 0.001	20112272
Chromium (mg/L)	SM3125	0.001	0.073	20112272
Copper (mg/L)	SM3125	0.001	0.006	20112272
Iron (mg/L)	SM3125	0.05	5.03	20112272
Magnesium (mg/L)	SM3125	0.1	8.5	20112272
Manganese (mg/L)	SM3125	0.002	0.221	20112272
Molybdenum (mg/L)	SM3125	0.002	0.002	20112272
Nickel (mg/L)	SM3125	0.002	0.007	20112272
Phosphorus (mg/L)	SM3125	0.02	< 0.02	20112272
Lead (mg/L)	SM3125	0.00005	0.0014	20112272
Selenium (mg/L)	SM3125	0.001	0.008	20112272
Tin (mg/L)	SM3125	0.002	< 0.002	20112272
Strontium (mg/L)	SM3125	0.005	9.34	20112272
Sulphur (mg/L)	EPA 200.7	0.05	1.03	20112272
Thorium (mg/L)	EPA 200.8	0.001	< 0.001	20112272
Uranium (mg/L)	SM3125	0.0001	< 0.0001	20112272
Vanadium (mg/L)	SM3125	0.002	0.009	20112272
Zinc (mg/L)	SM3125	0.005	0.166	20112272
pH (no unit)	SM4500 H+B	-	6.9	5106294

Notes: Tested by AGAT Laboratories, Dartmouth, NS

NA - Due to the sample matrix the result for TKN is not available

REMARKS:

This report is issued by the Company under its General Conditions for Inspection and Testing Services (copy available upon request). The issuance of this report does not exonerate buyers or sellers from exercising all their rights and discharging all their liabilities under the Contract of Sale. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

This test report shall not be reproduced except in full without written approval of SGS Canada Inc.

SGS Canada Inc. Oil, Gas & Chemicals Services

4092 Port Malcolm Road Point Tupper NS B9A 1Z5 t (902) 625-3233 f (902) 625-0264 www.sgs.ca

Page 1 of 1

REPORT OF ANALYSIS - PRODUCED WATER

CLIENT: ExxonMobil Canada, 500 Sable Road, Highway 316, Goldboro, NS B0H 1L0

CLIENT REFERENCE NO.: SO#4502466480 WO#00522529CA

SGS JOB/SAMPLE NO.: EMC-2569 DATE SAMPLED: December 6, 2017

SAMPLE DESCRIPTION: Produced Water TIME SAMPLED:

SAMPLE SOURCE: Venture Platform SAMPLED BY: Client

METAL PREP: (Total or Dissolved): Total

DATE RECEIVED: December 7, 2017

DATE REPORTED: December 21, 2017

TEST	<u>METHOD</u>	Detection <u>Limit (mg/L)</u>	RESULT	SMC
Ammonia+Ammonium (N) (mg/L)	SM4500-NH3 G	0.1	295	20112272
T. Kjeldahl Nitrogen (as N mg/L)	SM4500-NORG D	0.4	181	20112278
Mercury (mg/L)	SM3112 B	0.000026	<0.000026	20112276
Aluminum (mg/L)	SM3125	0.005	0.628	20112272
Antimony (mg/L)	SM3125	0.7	<0.7	20112272
Arsenic (mg/L)	SM3125	0.002	0.668	20112272
Barium (mg/L)	SM3125	7	887	20112272
Boron (mg/L)	SM3125	0.005	47.4	20112272
Cadmium (mg/L)	SM3125	0.000017	0.00112	20112272
Cobalt (mg/L)	SM3125	0.001	0.045	20112272
Chromium (mg/L)	SM3125	0.001	0.092	20112272
Copper (mg/L)	SM3125	0.001	0.231	20112272
Iron (mg/L)	SM3125	0.05	155	20112272
Magnesium (mg/L)	SM3125	0.1	1510	20112272
Manganese (mg/L)	SM3125	3	51	20112272
Molybdenum (mg/L)	SM3125	0.002	0.033	20112272
Nickel (mg/L)	SM3125	0.002	1.01	20112272
Phosphorus (mg/L)	SM3125	0.02	1.42	20112272
Lead (mg/L)	SM3125	0.0005	0.0544	20112272
Selenium (mg/L)	SM3125	0.001	0.300	20112272
Tin (mg/L)	SM3125	0.002	< 0.002	20112272
Strontium (mg/L)	SM3125	5	2450	20112272
Sulphur (mg/L)	EPA 200.7	5	47	20112272
Thorium (mg/L)	EPA 200.8	0.02	< 0.02	20112272
Uranium (mg/L)	SM3125	0.0001	< 0.0001	20112272
Vanadium (mg/Ĺ)	SM3125	0.002	0.655	20112272
Zinc (mg/L)	SM3125	0.005	5.56	20112272
pH (no unit)	SM4500 H+B	-	5.93	5106294

Notes: Tested by AGAT Laboratories, Dartmouth, NS

REMARKS:

This report is issued by the Company under its General Conditions for Inspection and Testing Services (copy available upon request). The issuance of this report does not exonerate buyers or sellers from exercising all their rights and discharging all their liabilities under the Contract of Sale. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

Approved by Supervisor: R' O'Donnell

This test report shall not be reproduced except in full without written approval of SGS Canada Inc.

SGS Canada Inc. Oil, Gas & Chemicals Services

4092 Port Malcolm Road Point Tupper NS B9A 1Z5 t (902) 625-3233 f (902) 625-0264 www.sgs.ca

Page 1 of 1

REPORT OF ANALYSIS - PRODUCED WATER

CLIENT: ExxonMobil Canada, 500 Sable Road, Highway 316, Goldboro, NS B0H 1L0

CLIENT REFERENCE NO.: SO#4502466480 WO#00522529CA

SGS JOB/SAMPLE NO.: EMC-2570 DATE SAMPLED: December 8, 2017

SAMPLE DESCRIPTION: Produced Water TIME SAMPLED:

SAMPLE SOURCE: South Venture Platform SAMPLED BY: Client

METAL PREP: (Total or Dissolved): Total

DATE RECEIVED: December 9, 2017

DATE REPORTED: December 21, 2017

TEST	<u>METHOD</u>	Detection Limit (mg/L)	RESULT	<u>SMC</u>
Ammonia+Ammonium (N) (mg/L)	SM4500-NH3 G	0.1	213	20112272
T. Kjeldahl Nitrogen (as N mg/L)	SM4500-NORG D	0.4	112	20112278
Mercury (mg/L)	SM3112 B	0.000026	<0.00026	20112276
Aluminum (mg/L)	SM3125	0.005	0.349	20112272
Antimony (mg/L)	SM3125	0.002	< 0.002	20112272
Arsenic (mg/L)	SM3125	0.002	0.300	20112272
Barium (mg/L)	SM3125	12.5	9210	20112272
Boron (mg/L)	SM3125	0.005	7.71	20112272
Cadmium (mg/L)	SM3125	0.000017	0.000458	20112272
Cobalt (mg/L)	SM3125	0.001	0.017	20112272
Chromium (mg/L)	SM3125	0.001	0.072	20112272
Copper (mg/L)	SM3125	0.001	0.098	20112272
Iron (mg/L)	SM3125	0.05	66.6	20112272
Magnesium (mg/L)	SM3125	0.1	595	20112272
Manganese (mg/L)	SM3125	0.002	7.64	20112272
Molybdenum (mg/L)	SM3125	0.002	< 0.002	20112272
Nickel (mg/L)	SM3125	0.002	0.376	20112272
Phosphorus (mg/L)	SM3125	0.02	< 0.02	20112272
Lead (mg/L)	SM3125	0.0005	< 0.0005	20112272
Selenium (mg/L)	SM3125	0.001	0.204	20112272
Tin (mg/L)	SM3125	0.002	< 0.002	20112272
Strontium (mg/L)	SM3125	12.5	10100	20112272
Sulphur (mg/L)	EPA 200.7	0.25	14	20112272
Thorium (mg/L)	EPA 200.8	0.02	< 0.02	20112272
Uranium (mg/L)	SM3125	0.0001	0.0002	20112272
Vanadium (mg/L)	SM3125	0.002	0.384	20112272
Zinc (mg/L)	SM3125	0.005	0.667	20112272
pH (no unit)	SM4500 H+B	-	6.49	5106294

Notes: Tested by AGAT Laboratories, Dartmouth, NS

REMARKS:

This report is issued by the Company under its General Conditions for Inspection and Testing Services (copy available upon request). The issuance of this report does not exonerate buyers or sellers from exercising all their rights and discharging all their liabilities under the Contract of Sale. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than three months.

Approved by Supervisor: R' O'Donnell

This test report shall not be reproduced except in full without written approval of SGS Canada Inc.

SGS Canada Inc. Oil, Gas & Chemicals Services

4092 Port Malcolm Road Point Tupper NS B9A 1Z5 t (902) 625-3233 f (902) 625-0264 www.sgs.ca

Appendix for Section 3

DATE	TIME	PLUME COLOR	SIZE	COMMENTS
Jan 1-2017	08:00 HRS	Clear	Normal	Strong S Winds
Jan 1-2017	17:00 HRS	Clear	Normal	Moderate SW Winds
Jan 2-2017	08:00 HRS	Clear	Normal	Strong NW Winds
Jan 2-2017	17:00 HRS	Clear	Normal	Strong NW Winds
Jan 3-2017	08:00 HRS	Clear	Normal	Moderate N Winds
Jan 3-2017	17:00 HRS	Clear	Normal	Moderate N Winds
Jan 4-2017	08:00 HRS	Clear	Normal	Gale Force SE Winds
Jan 4-2017	17:00 HRS	Clear	Normal	Gale Force S Winds
Jan 5-2017	08:00 HRS	Clear	Normal	Strong W Winds
Jan 5-2017	17:00 HRS	Clear	Normal	Gale Force W Winds
Jan 6-2017	08:00 HRS	Clear	Normal	Moderate S Winds
Jan 6-2017	17:00 HRS	Clear	Normal	Winds Light & Variable
Jan 7-2017	08:00 HRS	Clear	Normal	Moderate NW Winds
Jan 7-2017	17:00 HRS	Clear	Normal	Light NW Winds
Jan 8-2017	08:00 HRS	Clear	Normal	Storm Force S Winds
Jan 8-2017	17:00 HRS	Clear	Normal	Gale Force W Winds
Jan 9-2017	08:00 HRS	Clear	Normal	Very Strong WNW Winds
Jan 9-2017	17:00 HRS	Clear	Normal	Very Strong WNW Winds
Jan 10-2017	08:00 HRS	Clear	Normal	Winds Light & Variable
Jan 10-2017	17:00 HRS	Clear	Normal	Light S Winds
Jan 11-2017	08:00 HRS	Clear	Normal	Strong SE Winds
Jan 11-2017	17:00 HRS	Clear	Normal	Strong SE Winds
Jan 12-2017	08:00 HRS	Clear	Normal	Moderate S Winds
Jan 12-2017	17:00 HRS	Clear Flare not lit	Normal	Strong S Winds Gale Force WSW Winds
Jan 13-2017	08:00 HRS	Flare not lit	NA NA	Gale Force W Winds Gale Force W Winds
Jan 13-2017 Jan 14-2017	17:00 HRS 08:00 HRS	Flare not lit	NA NA	Gale Force NW Winds
Jan 14-2017	17:00 HRS	Flare not lit	NA NA	Gale Force NW Winds
Jan 15-2017	08:00 HRS	Flare not lit	NA	Moderate SW Winds
Jan 15-2017	17:00 HRS	Flare not lit	NA	Strong W Winds
Jan 16-2017	08:00 HRS	Flare not lit	NA	Strong NW Winds
Jan 16-2017	17:00 HRS	Clear	Normal	Moderate W Winds
Jan 17-2017	08:00 HRS	Clear	Normal	Strong W Winds
Jan 17-2017	17:00 HRS	Clear	Normal	Strong NW Winds
Jan 18-2017	08:00 HRS	Clear	Normal	Moderate NE Winds
Jan 18-2017	17:00 HRS	Clear	Normal	Moderate NE Winds
Jan 19-2017	08:00 HRS	Clear	Normal	Moderate E Winds
Jan 19-2017	17:00 HRS	Clear	Normal	Moderate E Winds
Jan 20-2017	08:00 HRS	Clear	Normal	Moderate E Winds
Jan 20-2017	17:00 HRS	Clear	Normal	Moderate NE Winds
Jan 21-2017	08:00 HRS	Clear	Normal	ModerateNWE Winds
Jan 21-2017	17:00 HRS	Clear	Normal	Moderate W Winds
Jan 22-2017	08:00 HRS	Clear	Normal	Moderate W Winds
Jan 22-2017	17:00 HRS	Clear	Normal	Strong N Winds
Jan 23-2017	08:00 HRS	Clear	Normal	Strong N Winds
Jan 23-2017	17:00 HRS	Clear	Normal	Moderate NE Winds
Jan 24-2017	08:00 HRS	Clear	Normal	Moderate E Winds
Jan 24-2017	17:00 HRS	Clear	Normal	Gale Force E Winds
Jan 25-2017	08:00 HRS	Clear	Normal	Gale Force ESE Winds
Jan 25-2017	17:00 HRS	Clear	Normal	Strong SSE Winds
Jan 26-2017	08:00 HRS	Clear	Normal	Strong W Winds
Jan 26-2017	17:00 HRS	Clear	Normal	Strong S Winds
Jan 27-2017	08:00 HRS	Clear	Normal	Gale Force WSW Winds
Jan 27-2017	17:00 HRS	Clear	Normal	Gale Force WSW Winds
Jan 28-2017	08:00 HRS	Clear	Normal	Gale Force WSW Winds
Jan 28-2017	17:00 HRS	Clear	Normal	Gale Force W Winds
Jan 29-2017	08:00 HRS	Clear	Normal	Strong WSW Winds
Jan 29-2017	17:00 HRS	Clear No 1 on Chart	Normal Normal	Strong WSW Winds Winds Light & Variable
Jan 30-2017 Jan 30-2017	08:00 HRS 17:00 HRS	Clear	Normal	Winds Light & Variable Winds Light & Variable
Jan 31-2017	08:00 HRS	Clear	Normal	Moderate NNW Winds
Jan 31-2017	17:00 HRS	Clear	Normal	Moderate W Winds
		3.00.		

DATE	TIME	PLUME COLOR	SIZE	COMMENTS
Feb 01-2017	08:00 HRS	Clear	Normal	Light E Winds
Feb 01-2017	17:00 HRS	Clear	Normal	Moderate E Winds
Feb 02-2017	08:00 HRS	Clear	Normal	Strong W Winds
Feb 02-2017	17:00 HRS	Clear	Normal	Strong W Winds
Feb 03-2017	08:00 HRS	Clear	Normal	Strong W Winds
Feb 03-2017	17:00 HRS	Clear	Normal	Strong W Winds
Feb 04-2017	08:00 HRS	Clear	Normal	Strong N Winds
Feb 04-2017	17:00 HRS	Clear	Normal	Strong NNW Winds
Feb 05-2017	08:00 HRS	Clear	Normal	Strong W Winds
Feb 05-2017	17:00 HRS	Clear	Normal	Strong W Winds
Feb 06-2017	08:00 HRS	Clear	Normal	Strong W Winds
Feb 06-2017	17:00 HRS	Clear	Normal	Strong W Winds
Feb 07-2017	08:00 HRS	Clear	Normal	Strong W Winds
Feb 07-2017	17:00 HRS	Clear	Normal	Strong WNW Winds
Feb 08-2017	08:00 HRS	Clear	Normal	Strong SE Winds
Feb 08-2017	17:00 HRS	Clear	Normal	Strong SW Winds
Feb 09-2017	08:00 HRS	Clear	Normal	Strong NE Winds
Feb 09-2017	17:00 HRS	Clear	Normal	Gale Force NE Winds
Feb 10-2017	08:00 HRS	Clear	Normal	Storm Force W Winds
Feb 10-2017	17:00 HRS	Clear	Normal	Gale Force W Winds
Feb 11-2017	08:00 HRS	Clear	Normal	Strong W Winds
Feb 11-2017	17:00 HRS	Clear	Normal	Moderate W Winds
Feb 12-2017	08:00 HRS	Clear	Normal	Moderate E Winds
Feb 12-2017	17:00 HRS	Clear	Normal	Moderate E Winds
Feb 13-2017	08:00 HRS	Clear	Normal	Storm Force E Winds
Feb 13-2017	17:00 HRS	Clear	Normal	Storm Force E Winds
Feb 14-2017	08:00 HRS	Clear	Normal	Storm Force NNE Winds
Feb 14-2017	17:00 HRS	Clear	Normal	Storm Force N Winds
Feb 15-2017	08:00 HRS	Clear	Normal	Strong NW Winds
Feb 15-2017	17:00 HRS	Clear	Normal	Winds Light & Variable
Feb 16-2017	08:00 HRS	Clear	Normal	Strong SW Winds
Feb 16-2017	17:00 HRS	Clear	Normal	Storm Force WSW Winds
Feb 17-2017	08:00 HRS	Clear	Normal	Very Strong W Winds
Feb 17-2017	17:00 HRS	Clear	Normal	Strong W Winds
Feb 18-2017	08:00 HRS	Clear	Normal	Strong W Winds
Feb 18-2017	17:00 HRS	Clear	Normal	Strong W Winds
Feb 19-2017	08:00 HRS	Clear	Normal	Strong W Winds
Feb 19-2017	17:00 HRS	Clear	Normal	Moderate WSW Winds
Feb 20-2017	08:00 HRS	Clear	Normal	Moderate NNE Winds
Feb 20-2017	17:00 HRS	Clear	Normal	Strong NNE Winds
Feb 21-2017	08:00 HRS	Clear	Normal	Strong NNE Winds
Feb 21-2017	17:00 HRS	Clear	Normal	Strong NNE Winds
Feb 22-2017	08:00 HRS	Clear	Normal	Light NE Winds
Feb 22-2017	17:00 HRS	Clear	Normal	Light NE Winds
Feb 23-2017	08:00 HRS	Clear	Normal	Light WNW Winds
Feb 23-2017	17:00 HRS	Clear	Normal	Light WNW Winds
Feb 24-2017 Feb 24-2017	08:00 HRS 17:00 HRS	Clear	Normal	Strong WSW Winds
Feb 25-2017		Clear Clear	Normal	Strong SW Winds Moderate SW Winds
Feb 25-2017	08:00 HRS 17:00 HRS	Clear	Normal Normal	Moderate SSW Winds
Feb 26-2017	08:00 HRS	Obscured with FOG	Normal	Gale Force S Winds
Feb 26-2017	17:00 HRS	Clear	Normal	Very Strong W Winds
Feb 27-2017	08:00 HRS	Clear	Normal	Strong WNW Winds
Feb 27-2017	17:00 HRS	Clear	Normal	Strong SW Winds
Feb 28-2017	08:00 HRS	Clear	Normal	Moderate NW Winds
Feb 28-2017	17:00 HRS	Clear	Normal	Moderate NW Winds

DATE	TIME	PLUME COLOR	SIZE	COMMENTS
Mar 01-2017	08:00 HRS	Clear	Normal	Moderate SSE Winds
Mar 01-2017	17:00 HRS	Obscured with FOG	Normal	Strong S Winds
Mar 02-2017	08:00 HRS	Obscured with FOG	Normal	Strong SW Winds
Mar 02-2017	17:00 HRS	Obscured with FOG	Normal	Strong SW Winds
Mar 03-2017	08:00 HRS	Clear	Normal	Strong W Winds
Mar 03-2017	17:00 HRS	Clear	Normal	Strong W Winds
Mar 04-2017	08:00 HRS	Clear	Normal	Strong W Winds
Mar 04-2017	17:00 HRS	Clear	Normal	Strong W Winds
Mar 05-2017	08:00 HRS	Clear	Normal	Gale Force WNW Winds
Mar 05-2017	17:00 HRS	Clear	Normal	Gale Force WNW Winds
Mar 06-2017	08:00 HRS	Clear	Normal	Gale Force NNW Winds
Mar 06-2017	17:00 HRS	Clear	Normal	Gale Force NNW Winds
Mar 07-2017	08:00 HRS	Clear	Normal	Moderate N Winds
Mar 07-2017	17:00 HRS	Clear	Normal	Light NW Winds
Mar 08-2017	08:00 HRS	Clear	Normal	Light S Winds
Mar 08-2017	17:00 HRS	Obscured with FOG	Normal	Strong S Winds
Mar 09-2017	08:00 HRS	Clear	Normal	Moderate SW Winds
Mar 09-2017	17:00 HRS	Clear	Normal	Strong SW Winds
Mar 10-2017	08:00 HRS	Clear	Normal	Strong W Winds
Mar 10-2017	17:00 HRS	Clear	Normal	Moderate W Winds
Mar 11-2017	08:00 HRS	No Flare Lit	NA	Storm force W Winds
Mar 11-2017	17:00 HRS	No Flare Lit	NA	Gale Force W Winds
Mar 12-2017	08:00 HRS	No Flare Lit	NA	Gale Force W Winds
Mar 12-2017	17:00 HRS	No Flare Lit	NA	Gale Force W Winds
Mar 13-2017	08:00 HRS	No Flare Lit	NA	Strong W Winds
Mar 13-2017	17:00 HRS	No Flare Lit	NA	Strong W Winds
Mar 14-2017	08:00 HRS	No Flare Lit	NA	Light S Winds
Mar 14-2017	17:00 HRS	No Flare Lit	NA	Strong S Winds
Mar 15-2017	08:00 HRS	No Flare Lit	NA	Strong SSW Winds
Mar 15-2017	17:00 HRS	No Flare Lit	NA	Strong SSW Winds
Mar 16-2017	08:00 HRS	No Flare Lit	NA	Strong SW Winds
Mar 16-2017	17:00 HRS	No Flare Lit	NA	Strong SW Winds
Mar 17-2017	08:00 HRS	No Flare Lit	NA	Moderate SW Winds
Mar 17-2017	17:00 HRS	No Flare Lit	NA	Moderate W Winds
Mar 18-2017	08:00 HRS	No Flare Lit	NA	Moderate NNW Winds
Mar 18-2017	17:00 HRS	No Flare Lit	NA	Moderate NNW Winds
Mar 19-2017	08:00 HRS	No Flare Lit	NA	Light NE Winds
Mar 19-2017	17:00 HRS	No Flare Lit	NA	Strong E Winds
Mar 20-2017	08:00 HRS	No Flare Lit	NA	Strong SE Winds
Mar 20-2017	17:00 HRS	No Flare Lit	NA	Moderate NE Winds
Mar 21-2017	08:00 HRS	No Flare Lit	NA	Strong N Winds
Mar 21-2017	17:00 HRS	No Flare Lit	NA	Very Strong NNW Winds
Mar 22-2017	08:00 HRS	No Flare Lit	NA	Light & Variable Winds
Mar 22-2017	17:00 HRS	No Flare Lit	NA	Light & Variable Winds
Mar 23-2017	08:00 HRS	No Flare Lit	NA	Gale Force W Winds
Mar 23-2017	17:00 HRS	No Flare Lit	NA	Gale Force NW Winds
Mar 24-2017	08:00 HRS	No Flare Lit	NA	Strong NW Winds
Mar 24-2017	17:00 HRS	No Flare Lit	NA	Moderate W Winds
Mar 25-2017	08:00 HRS	No Flare Lit	NA	Moderate SE Winds
Mar 25-2017	17:00 HRS	No Flare Lit	NA	Strong NNW Winds
Mar 26-2017	08:00 HRS	No Flare Lit	NA	Strong NW Winds
Mar 26-2017	17:00 HRS	No Flare Lit	NA	Strong NW Winds
Mar 27-2017	08:00 HRS	No Flare Lit	NA	Moderate NNW Winds
Mar 27-2017	17:00 HRS	No Flare Lit	NA	Winds Light & Variable
Mar 28-2017	08:00 HRS	No Flare Lit	NA	Very Strong E Winds
Mar 28-2017	17:00 HRS	No Flare Lit	NA	Gale Force E Winds
Mar 29-2017	08:00 HRS	No Flare Lit	NA	Strong ENE Winds
Mar 29-2017	17:00 HRS	No Flare Lit	NA	Strong E Winds
Mar 30-2017	08:00 HRS	No Flare Lit	NA	Gale Force NNW Winds
Mar 30-2017	17:00 HRS	No Flare Lit	NA	Gale Force NNW Winds
Mar 31-2017	08:00 HRS	No Flare Lit	NA	Gale Force NNW Winds
Mar 31-2017	17:00 HRS	No Flare Lit	NA	Gale Force NNW Winds

DATE	<u>TIME</u>	PLUME COLOR	SIZE	COMMENTS
April 01-2017	08:00 HRS	No Flare Lit	NA	Moderate NE Winds
April 01-2017	17:00 HRS	No Flare Lit	NA	Moderate NE Winds
April 02-2017	08:00 HRS	No Flare Lit	NA	Gale Force NE Winds
April 02-2017	17:00 HRS	No Flare Lit	NA	Gale Force NE Winds
April 03-2017	08:00 HRS	No Flare Lit	NA	Gale Force NNW Winds
April 03-2017	17:00 HRS	No Flare Lit	NA	Gale Force NNW Winds
April 04-2017	08:00 HRS	No Flare Lit	NA	Gale Force NNW Winds
April 04-2017	17:00 HRS	No Flare Lit	NA	Strong N Winds
April 05-2017	08:00 HRS	No Flare Lit	NA	Moderate E Winds
April 05-2017	17:00 HRS	No Flare Lit	NA	Moderate E Winds
April 06-2017	08:00 HRS	No Flare Lit	NA	Moderate E Winds
April 06-2017	17:00 HRS	No Flare Lit	NA	Moderate E Winds
April 07-2017	08:00 HRS	No Flare Lit	NA	Strong SE Winds
April 07-2017	17:00 HRS	No Flare Lit	NA	Strong SE Winds
April 08-2017	08:00 HRS	No Flare Lit	NA	Moderate S Winds
April 08-2017	17:00 HRS	No Flare Lit	NA	Light SW Winds
April 09-2017	08:00 HRS	Clear	Normal	Moderate SW Winds
April 09-2017	17:00 HRS	Clear	Normal	Moderate SW Winds
April 10-2017	08:00 HRS	Clear	Normal	Light WSW Winds
April 10-2017	17:00 HRS	Clear	Normal	Light WSW Winds
April 11-2017	08:00 HRS	Clear	Normal	Moderate S Winds
April 11-2017	17:00 HRS	Clear	Normal	Strong SW Winds
April 12-2017	08:00 HRS	Clear	Normal	Winds Light & Variable
April 12-2017	17:00 HRS	Clear	Normal	Moderate SSW Winds
April 13-2017	08:00 HRS	Clear	Normal	Moderate SW Winds
April 13-2017	17:00 HRS	Clear	Normal	Moderate SW Winds
April 14-2017	08:00 HRS	Clear	Normal	Moderate N Winds
April 14-2017	17:00 HRS	Clear	Normal	Moderate N Winds
April 15-2017	08:00 HRS	Clear	Normal	Light Variable Winds
April 15-2017	17:00 HRS	Clear	Normal	Light W Winds
April 16-2017	08:00 HRS	Clear	Normal	Moderate SW Winds
April 16-2017	17:00 HRS	Clear	Normal	Strong S Winds
April 17-2017	08:00 HRS	Clear	Normal	Strong SW Winds
April 17-2017	17:00 HRS	Clear	Normal	Moderate NW Winds
April 18-2017	08:00 HRS	Clear	Normal	Moderate NNE Winds
April 18-2017	17:00 HRS	Clear	Normal	Strong NNE Winds
April 19-2017	08:00 HRS	Clear	Normal	Strong NNE Winds
April 19-2017	17:00 HRS	Clear	Normal	Moderate NE Winds
April 20-2017	08:00 HRS	Clear	Normal	Light NNE Winds
April 20-2017	18:00 HRS	Clear	Normal	Moderate NNE Winds
April 21-2017	08:00 HRS	Clear	Normal	Strong NNE Winds
April 21-2017	18:00 HRS	Clear	Normal	Moderate NNE Winds
April 22-2017	08:00 HRS	Clear	Normal	Moderate NE Winds
April 22-2017	18:00 HRS 08:00 HRS	Clear	Normal	Moderate ENE Winds
April 23-2017		Clear Clear	Normal	Strong NE Winds Strong NNW Winds
April 23-2017	18:00 HRS		Normal	Moderate SW Winds
April 24-2017 April 24-2017	08:00 HRS 18:00 HRS	Clear Clear	Normal Normal	Moderate SW Winds
April 25-2017	08:00 HRS	Obscured in Fog	Normal	Moderate NE Winds
April 25-2017 April 25-2017	18:00 HRS	Clear	Normal	Moderate ENE Winds
April 26-2017	08:00 HRS	Clear	Normal	Moderate SE Winds
April 26-2017	18:00 HRS	Clear	Normal	Moderate SE Winds
April 20-2017 April 27-2017	08:00 HRS	Clear	Normal	Moderate S Winds
April 27-2017 April 27-2017	18:00 HRS	Clear	Normal	Moderate SE Winds
April 27-2017 April 28-2017	08:00 HRS	Obscured in Fog	Normal	Moderate SE Winds Moderate S Winds
April 28-2017 April 28-2017	18:00 HRS	Obscured in Fog	Normal	Moderate SE Winds
April 29-2017 April 29-2017	08:00 HRS	Obscured in Fog	Normal	Moderate W Winds
April 29-2017 April 29-2017	18:00 HRS	Obscured in Fog	Normal	Moderate W Winds
April 30-2017	08:00 HRS	Obscured in Fog	Normal	Strong NW Winds
April 30-2017	18:00 HRS	Obscured in Fog	Normal	Strong NW Winds
F				- · · · · · · · · · · · · · · · · · · ·

DATE	TIME	PLUME COLOR	SIZE	COMMENTS
May 01-2017	08:00 HRS	Clear	Normal	Light NW Winds
May 01-2017	18:00 HRS	Clear	Normal	Light SW Winds
May 02-2017	08:00 HRS	Clear	Normal	Moderate SW Winds
May 02-2017	18:00 HRS	Obscured in Fog	Normal	Strong S Winds
May 03-2017	08:00 HRS	Obscured in Fog	Normal	Strong SW Winds
May 03-2017	18:00 HRS	Clear	Normal	Strong SW Winds
May 04-2017	08:00 HRS	Clear	Normal	Strong W Winds
May 04-2017	18:00 HRS	Clear	Normal	Moderate WNW Winds
May 05-2017	08:00 HRS	Clear	Normal	Light SSW Winds
May 05-2017	18:00 HRS	Clear	Normal	Light S Winds
May 06-2017	08:00 HRS	Clear	Normal	Strong SE Winds
May 06-2017	18:00 HRS	Clear	Normal	Strong SE Winds
May 07-2017	08:00 HRS	Obscured in Fog	Normal	Strong SE Winds
May 07-2017	18:00 HRS	Obscured in Fog	Normal	Strong SE Winds
May 08-2017	08:00 HRS	Obscured in Fog	Normal	Strong SE Winds
May 08-2017	18:00 HRS	Obscured in Fog	Normal	Moderate WNW Winds
May 09-2017	08:00 HRS	Obscured in Fog	Normal	Moderate SE Winds
May 09-2017	18:00 HRS	Obscured in Fog	Normal	Moderate SE Winds
May 10-2017	08:00 HRS	Clear	Normal	Moderate NW Winds
May 10-2017	18:00 HRS	Obscured in Fog	Normal	Light WNW Winds
May 11-2017	08:00 HRS	Clear	Normal	Light N Winds
May 11-2017	18:00 HRS	Clear	Normal	Moderate NE Winds
May 12-2017	08:00 HRS	Clear	Normal	Very Strong NE Winds
May 12-2017	18:00 HRS	Clear	Normal	Very Strong NE Winds
May 13-2017	08:00 HRS	Clear	Normal	Moderare N Winds
May 13-2017	18:00 HRS	Clear	Normal	Light N Winds
May 14-2017	08:00 HRS	Clear	Normal	Light ESE Winds
May 14-2017	18:00 HRS	Clear	Normal	Strong E Winds
May 15-2017	08:00 HRS	Clear	Normal	Moderate SSE Winds
May 15-2017	18:00 HRS	Clear	Normal	Strong SSE Winds
May 16-2017	08:00 HRS	Obscured in Fog	Normal	Winds Light & Variable
May 16-2017	18:00 HRS	Clear	Normal	Strong W Winds
May 17-2017	08:00 HRS	Clear	Normal	Moderate W Winds
May 17-2017	18:00 HRS	Clear	Normal	Moderate W Winds
May 18-2017	08:00 HRS	Clear	Normal	Moderate SSW Winds
May 18-2017	18:00 HRS	Clear	Normal	Moderate SW Winds
May 19-2017	08:00 HRS	Clear	Normal	Strong SW Winds
May 19-2017	18:00 HRS	Clear	Normal	Strong SW Winds
May 20-2017	08:00 HRS	Clear	Normal	Strong NW Winds
May 20-2017	18:00 HRS	Clear	Normal	Gale Force NW Winds
May 21-2017	08:00 HRS	Clear	Normal	Gale Force NW Winds
May 21-2017	18:00 HRS	Clear	Normal	Gale Force NNW Winds
May 22-2017	08:00 HRS	Clear	Normal	Strong NNW Winds
May 22-2017	18:00 HRS	Clear	Normal	Moderate NW Winds
May 23-2017	08:00 HRS	Clear	Normal	Moderate SW Winds
May 23-2017	18:00 HRS	Clear	Normal	Moderate SW Winds Moderate SW Winds
May 24-2017	08:00 HRS	Obscured in Fog	Normal	Moderate NW Winds
May 24-2017	18:00 HRS	Obscured in Fog	Normal	
May 25-2017	08:00 HRS	Obscured in Fog	Normal	Strong S Winds
May 25-2017	18:00 HRS	Obscured in Fog	Normal	Strong S Winds
May 26-2017	08:00 HRS	Obscured in Fog	Normal	Strong S Winds
May 26-2017	18:00 HRS	Obscured in Fog	Normal	Moderate S Winds
May 27-2017	08:00 HRS	Obscured in Fog	Normal	Moderate W Winds
May 27-2017	18:00 HRS	Clear	Normal Normal	Moderate NNE Winds Moderate NE Winds
May 28-2017	08:00 HRS	Clear	Normal	
May 28-2017	18:00 HRS	Clear	Normal	Moderate NE Winds
May 29-2017	08:00 HRS	Clear Clear	Normal Normal	Light NE Winds
May 29-2017	18:00 HRS			Light E Winds
May 30-2017	08:00 HRS	Clear Obscured in Fog	Normal Normal	Light E Winds Light E Winds
May 30-2017	18:00 HRS 08:00 HRS	Clear	Normal	Light SE Winds
May 31-2017	18:00 HRS	Clear	Normal	Light SSE Winds
May 31-2017	10.00 FIRS	Olcai	inuillai	LIGHT OOE WINUS

DATE	TIME	PLUME COLOR	SIZE	COMMENTS
June 1-2017	08:00 HRS	Obscured in Fog	Normal	Moderate S Winds
June 1-2017	18:00 HRS	Obscured in Fog	Normal	Moderate S Winds
June 2-2017	08:00 HRS	Obscured in Fog	Normal	Moderate SW Winds
June 2-2017	18:00 HRS	Obscured in Fog	Normal	Moderate SW Winds
June 3-2017	08:00 HRS	Clear	Normal	Moderate WSW Winds
June 3-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
June 4-2017	08:00 HRS	Clear	Normal	Moderate WSW Winds
June 4-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
June 5-2017	08:00 HRS	Clear	Normal	Light NW Winds
June 5-2017	18:00 HRS	Clear	Normal	Light NW Winds
June 6-2017	08:00 HRS	Obscured in Fog	Normal	Moderate E Winds
June 6-2017	18:00 HRS	Clear	Normal	Strong E Winds
June 7-2017	08:00 HRS	Clear	Normal	Very Strong NNE Winds
June 7-2017	18:00 HRS	Clear	Normal	Moderate NE Winds
June 8-2017	08:00 HRS	Clear	Normal	Light W Winds
June 8-2017	18:00 HRS	Clear	Normal	Strong SW Winds
June 9-2017	08:00 HRS	Clear	Normal	Strong S Winds
June 9-2017	18:00 HRS	Clear	Normal	Gale Force SSE Winds
June 10-2017	08:00 HRS	Clear	Normal	Strong WSW Winds
June 10-2017	18:00 HRS	Clear	Normal	Moderate SW Winds
June 11-2017	08:00 HRS	Clear	Normal	Moderate SW Winds
June 11-2017	18:00 HRS	Clear	Normal	Gale Force SW Winds
June 12-2017	08:00 HRS	Clear	Normal	Moderate W Winds
June 12-2017 June 13-2017	18:00 HRS	Clear Clear	Normal Normal	Light WSW Winds Moderate SW Winds
June 13-2017	08:00 HRS 18:00 HRS	Clear	Normal	Strong SW Winds
June 14-2017	08:00 HRS	Clear	Normal	Moderate WSW Winds
June 14-2017	18:00 HRS	Clear	Normal	Very Strong NW Winds
June 15-2017	08:00 HRS	Clear	Normal	Moderate N Winds
June 15-2017	18:00 HRS	Clear	Normal	Light WNW Winds
June 16-2017	08:00 HRS	Clear	Normal	Light WNW Winds
June 16-2017	18:00 HRS	Clear	Normal	Light S Winds
June 17-2017	08:00 HRS	Clear	Normal	Moderate S Winds
June 17-2017	18:00 HRS	Clear	Normal	Strong S Winds
June 18-2017	08:00 HRS	Clear	Normal	Strong S Winds
June 18-2017	18:00 HRS	Clear	Normal	Strong S Winds
June 19-2017	08:00 HRS	Clear	Normal	Strong S Winds
June 19-2017	18:00 HRS	Clear	Normal	Strong SW Winds
June 20-2017	08:00 HRS	Clear	Normal	Strong SW Winds
June 20-2017	18:00 HRS	Clear	Normal	Strong SSW Winds
June 21-2017	08:00 HRS	Clear	Normal	Strong SSW Winds
June 21-2017	18:00 HRS	Clear	Normal	Strong SSW Winds
June 22-2017	08:00 HRS	Obscured in Fog	Normal	Moderate WSW Winds
June 22-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
June 23-2017	08:00 HRS	Clear	Normal	Moderate WSW Winds
June 23-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
June 24-2017	08:00 HRS	Clear	Normal	Moderate S Winds
June 24-2017	18:00 HRS	Obscured in Fog	Normal	Moderate SSW Winds
June 25-2017	08:00 HRS	Obscured in Fog	Normal	Moderate WSW Winds
June 25-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
June 26-2017	08:00 HRS	Clear	Normal	Moderate SW Winds
June 26-2017	18:00 HRS	Clear	Normal	Moderate SW Winds
June 27-2017	08:00 HRS	Clear	Normal	Light WSW Winds
June 27-2017	18:00 HRS	Clear	Normal	Light SW Winds
June 28-2017	08:00 HRS	Clear	Normal	Moderate NNE Winds
June 28-2017	18:00 HRS	Obscured in Fog	Normal	Moderate NNW Winds Moderate WSW Winds
June 29-2017 June 29-2017	08:00 HRS	Clear Clear	Normal Normal	Moderate WSW Winds
June 29-2017 June 30-2017	18:00 HRS 08:00 HRS	Clear	Normal	Moderate SW Winds
June 30-2017	18:00 HRS	Clear	Normal	Moderate SSW Winds
JO 2011	.5.00 1110	-1001		

DATE	<u>TIME</u>	PLUME COLOR	SIZE	COMMENTS
July 01-2017	08:00 HRS	Clear	Normal	Moderate WSW Winds
July 01-2017	18:00 HRS	Clear	Normal	Moderate SW Winds
July 02-2017	08:00 HRS	Clear	Normal	Moderate SSW Winds
July 02-2017	18:00 HRS	Clear	Normal	Strong SSW Winds
July 03-2017	08:00 HRS	Clear	Normal	Moderate WSW Winds
July 03-2017	18:00 HRS	Clear	Normal	Moderate SW Winds
July 04-2017	08:00 HRS	Clear	Normal	Moderate WSW Winds
July 04-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
July 05-2017	08:00 HRS	Clear	Normal	Winds Light & Variable
July 05-2017	18:00 HRS	Clear	Normal	Moderate N Winds
July 06-2017	08:00 HRS	Obscured in Fog	Normal	Light S Winds
July 06-2017	18:00 HRS	Clear	Normal	Moderate S Winds
July 07-2017	08:00 HRS	Clear	Normal	Moderate S Winds
July 07-2017	18:00 HRS	Clear	Normal	Strong SSE Winds
July 08-2017	08:00 HRS	Obscured in Fog	Normal	Strong S Winds
July 08-2017	18:00 HRS	Obscured in Fog	Normal	Strong S Winds
July 09-2017	08:00 HRS	Clear	Normal	Strong SSW Winds
July 09-2017	18:00 HRS	Clear	Normal	Strong SSW Winds
July 10-2017	08:00 HRS	Clear	Normal	Strong WSW Winds
July 10-2017	18:00 HRS	Clear	Normal	Moderate SW Winds
July 11-2017	08:00 HRS	Clear	Normal	Moderate SW Winds
July 11-2017	18:00 HRS	Clear	Normal	Light SW Winds
July 12-2017	08:00 HRS	Obscured in Fog	Normal	Strong SW Winds
July 12-2017	18:00 HRS	Obscured in Fog	Normal	Moderate SW Winds
July 13-2017	08:00 HRS	Obscured in Fog	Normal	Winds Light & Variable
July 13-2017	18:00 HRS	Clear Clear	Normal Normal	Light W Winds
July 14-2017	08:00 HRS	Clear	Normal	Light NE Winds Moderate E Winds
July 14-2017	18:00 HRS	Clear	Normal	Moderate E Winds
July 15-2017 July 15-2017	08:00 HRS 18:00 HRS	Obscured in Fog	Normal	Moderate E Winds
July 16-2017	08:00 HRS	Clear	Normal	Winds Light & Variable
July 16-2017	18:00 HRS	Clear	Normal	Winds Light & Variable
July 17-2017	08:00 HRS	Obscured in Fog	Normal	Winds Light & Variable Winds Light & Variable
July 17-2017	18:00 HRS	Obscured in Fog	Normal	Light SW Winds
July 18-2017	08:00 HRS	Clear	Normal	Light SE Winds
July 18-2017	18:00 HRS	Clear	Normal	Light SE Winds
July 19-2017	08:00 HRS	Obscured in Fog	Normal	Light WSW Winds
July 19-2017	18:00 HRS	Obscured in Fog	Normal	Light WSW Winds
July 20-2017	08:00 HRS	Obscured in Fog	Normal	Light WSW Winds
July 20-2017	18:00 HRS	Obscured in Fog	Normal	Light WSW Winds
July 21-2017	08:00 HRS	Obscured in Fog	Normal	Light WSW Winds
July 21-2017	18:00 HRS	Obscured in Fog	Normal	Light WSW Winds
July 22-2017	08:00 HRS	Clear	Normal	Light W Winds
July 22-2017	18:00 HRS	Clear	Normal	Moderate W Winds
July 23-2017	08:00 HRS	Clear	Normal	Light W Winds
July 23-2017	18:00 HRS	Clear	Normal	Light W Winds
July 24-2017	08:00 HRS	Clear	Normal	Light N Winds
July 24-2017	18:00 HRS	Clear	Normal	Light S Winds
July 25-2017	08:00 HRS	Clear	Normal	Strong E Winds
July 25-2017	18:00 HRS	Clear	Normal	Strong NE Winds
July 26-2017	08:00 HRS	Clear	Normal	Moderate NNE Winds
July 26-2017	18:00 HRS	Clear	Normal	Moderate NNE Winds
July 27-2017	08:00 HRS	Clear	Normal	Light ESE Winds
July 27-2017	18:00 HRS	Clear	Normal	Light SSE Winds
July 28-2017	08:00 HRS	Clear	Normal	Light SSW Winds
July 28-2017	18:00 HRS	Clear	Normal	Light SSW Winds
July 29-2017	08:00 HRS	Clear	Normal	Light SSW Winds
July 29-2017	18:00 HRS	Clear	Normal	Light SW Winds
July 30-2017	08:00 HRS	Clear	Normal	Strong NE Winds
July 30-2017	18:00 HRS	Clear	Normal	Strong NE Winds
July 31-2017	08:00 HRS	Clear	Normal	Light NNW Winds
July 31-2017	18:00 HRS	Clear	Normal	Light NW Winds

Aug 01-2017	08:00 HRS	Clear	Normal	Light WSW Winds
Aug 01-2017	18:00 HRS	Clear	Normal	Light WSW Winds
Aug 02-2017	08:00 HRS	Clear	Normal	Light NNW Winds
Aug 02-2017	18:00 HRS	Clear	Normal	Light E Winds
Aug 03-2017	08:00 HRS	Clear	Normal	Moderate ESE Winds
Aug 03-2017	18:00 HRS	Clear	Normal	Moderate SE Winds
Aug 04-2017	08:00 HRS	Clear	Normal	Light SE Winds
Aug 04-2017	18:00 HRS	Clear	Normal	Moderate SE Winds
Aug 05-2017	08:00 HRS	Clear	Normal	Moderate ESE Winds
Aug 05-2017	18:00 HRS	Clear	Normal	Moderate ESE Winds
Aug 06-2017	08:00 HRS	Clear	Normal	Moderate SE Winds
Aug 06-2017	18:00 HRS	Clear	Normal	Moderate SE Winds
Aug 07-2017	08:00 HRS	Clear	Normal	Strong WNW Winds
Aug 07-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
Aug 08-2017	08:00 HRS	Clear	Normal	Moderate WSW Winds
Aug 08-2017	18:00 HRS	Clear	Normal	Moderate SSW Winds
Aug 09-2017	08:00 HRS	Clear	Normal	Moderate WNW Winds
Aug 09-2017	18:00 HRS	Clear	Normal	Moderate W Winds
Aug 10-2017	08:00 HRS	Clear	Normal	Moderate WSW Winds
Aug 10-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
Aug 11-2017	08:00 HRS	Clear	Normal	Light SE Winds
Aug 11-2017	18:00 HRS	Clear Clear	Normal Normal	Light SE Winds
Aug 12-2017	08:00 HRS 18:00 HRS	Clear	Normal	Moderate ESE Winds Strong S Winds
Aug 12-2017 Aug 13-2017	08:00 HRS	Clear	Normal	Strong SW Winds
Aug 13-2017 Aug 13-2017	18:00 HRS	Clear	Normal	Strong SW Winds Strong SW Winds
Aug 14-2017	08:00 HRS	Clear	Normal	Moderate WNW Winds
Aug 14-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
Aug 15-2017	08:00 HRS	Clear	Normal	Moderate SW Winds
Aug 15-2017	18:00 HRS	Clear	Normal	Moderate SW Winds
Aug 16-2017	08:00 HRS	Clear	Normal	Moderate SSE Winds
Aug 16-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
Aug 17-2017	08:00 HRS	Clear	Normal	Moderate NW Winds
Aug 17-2017	18:00 HRS	Clear	Normal	Strong W Winds
Aug 18-2017	08:00 HRS	Clear	Normal	Moderate NW Winds
Aug 18-2017	18:00 HRS	Clear	Normal	Moderate NW Winds
Aug 19-2017	08:00 HRS	Clear	Normal	Moderate SSE Winds
Aug 19-2017	18:00 HRS	Clear	Normal	Moderate SSE Winds
Aug 20-2017	08:00 HRS	Clear	Normal	Strong S Winds
Aug 20-2017	18:00 HRS	Clear	Normal	Gale Force SSW Winds
Aug 21-2017	08:00 HRS	Clear	Normal	Moderate WNW Winds
Aug 21-2017	18:00 HRS	Clear	Normal	Moderate W Winds
Aug 22-2017	08:00 HRS	Clear	Normal	Moderate WSW Winds
Aug 22-2017	18:00 HRS	Clear	Small	Moderate WSW Winds
Aug 23-2017	08:00 HRS	Clear	Small	Moderate SSW Winds
Aug 23-2017	18:00 HRS	Clear	Small	Strong SSW Winds
Aug 24-2017	08:00 HRS	Not visible	NA	Moderate SSW Winds
Aug 24-2017	18:00 HRS	Not visible Chart # 4	NA	Moderate SSW Winds
Aug 25-2017	08:00 HRS	No Flare Lit	Just smoke	Light VRB
Aug 25-2017	18:00 HRS	No Flare Lit	NA NA	Light WNW Winds
Aug 26-2017 Aug 26-2017	08:00 HRS 18:00 HRS	No Flare Lit	NA NA	Light WNW Winds Light WNW Winds
Aug 27-2017	08:00 HRS	No Flare Lit	NA NA	Light NNW Winds
Aug 27-2017	18:00 HRS	No Flare Lit	NA	Light NNW Winds
Aug 28-2017	08:00 HRS	No Flare Lit	NA NA	Moderate NNE Winds
Aug 28-2017	18:00 HRS	No Flare Lit	NA	Moderate NNE Winds
Aug 29-2017	08:00 HRS	No Flare Lit	NA	Light NNE Winds
Aug 29-2017	18:00 HRS	No Flare Lit	NA	Moderate N Winds
Aug 30-2017	08:00 HRS	No Flare Lit	NA	Light NW Winds
Aug 30-2017	18:00 HRS	Clear	Normal	Moderate E Winds
Aug 31-2017	08:00 HRS	Clear	Small	Storm to Huricane Force NNE Winds
Aug 31-2017	18:00 HRS	Clear	Normal	Gale Force N Winds

DATE

TIME

PLUME COLOR

SIZE

COMMENTS

DATE	TIME	PLUME COLOR	SIZE	COMMENTS
Sept 01-2017	08:00 HRS	Clear	Normal	Moderate W Winds
Sept 01-2017	18:00 HRS	Clear	Normal	Moderate W Winds
Sept 02-2017	08:00 HRS	Clear	Normal	Strong WNW Winds
Sept 02-2017	18:00 HRS	Clear	Normal	Strong WNW Winds
Sept 03-2017	08:00 HRS	Clear	Normal	Light NW Winds
Sept 03-2017	18:00 HRS	Clear	Normal	Light SE Winds
Sept 04-2017	08:00 HRS	Clear	Normal	Strong SE Winds
Sept 04-2017	18:00 HRS	Clear	Normal	Strong WSW Winds
Sept 05-2017	08:00 HRS	Clear	Normal	Moderate SW Winds
Sept 05-2017	18:00 HRS	Clear	Normal	Strong SW Winds
Sept 06-2017	08:00 HRS	Clear	Normal	Strong S Winds
Sept 06-2017	18:00 HRS	Clear	Normal	Strong S Winds
Sept 07-2017	08:00 HRS	Obscured in Fog	Normal	Strong S Winds
Sept 07-2017	18:00 HRS	Clear	Normal	Strong S Winds
Sept 08-2017	08:00 HRS	Clear	Normal	Strong WSW Winds
Sept 08-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
Sept 09-2017	08:00 HRS	No 1 on Chart	Normal	Light S Winds
Sept 09-2017	18:00 HRS	Clear	Normal	Winds Light & Variable
Sept 10-2017	08:00 HRS	No 1 on Chart	Normal	Light NW Winds
Sept 10-2017	18:00 HRS	Clear	Normal	Light N Winds
Sept 11-2017	08:00 HRS	Clear	Normal	Gale Force NNE Winds
Sept 11-2017	18:00 HRS	Clear	Normal	Gale Force NE Winds
Sept 12-2017	08:00 HRS	Clear	Normal	Strong N Winds
Sept 12-2017	18:00 HRS	Clear	Normal	Strong N Winds
Sept 13-2017	08:00 HRS	Clear	Normal	Moderate NNW Winds
Sept 13-2017	18:00 HRS	Clear	Normal	Moderate NW Winds
Sept 14-2017	08:00 HRS	Clear	Normal	Moderate WSW Winds
Sept 14-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
Sept 15-2017	08:00 HRS	Clear	Normal	Moderate W Winds
Sept 15-2017	18:00 HRS	Clear	Normal	Moderate W Winds
Sept 16-2017	08:00 HRS	No Flare Lit	NA	Moderate WSW Winds
Sept 16-2017	18:00 HRS	No Flare Lit	NA	Moderate WSW Winds
Sept 17-2017	08:00 HRS	Clear	Normal	Light ENE Winds
Sept 17-2017	18:00 HRS	Clear	Normal	Light E Winds
Sept 18-2017	08:00 HRS	Clear	Normal	Moderate SSW Winds
Sept 18-2017	18:00 HRS	Clear	Normal	Moderate SE Winds
Sept 19-2017	08:00 HRS	Clear	Normal	Moderate ESE Winds
Sept 19-2017	18:00 HRS	Clear	Normal	Strong SE Winds
Sept 20-2017	08:00 HRS	Clear	Normal	Strong SSE Winds
Sept 20-2017	18:00 HRS	Clear	Normal	Strong S Winds
Sept 21-2017	08:00 HRS	Clear	Normal	Strong NE Winds
Sept 21-2017	18:00 HRS	Clear	Normal	Strong ENE Winds
Sept 22-2017	08:00 HRS	Clear	Normal	Moderate E Winds
Sept 22-2017	18:00 HRS	Clear	Normal	Moderate E Winds
Sept 23-2017	08:00 HRS	Clear	Normal	Moderate ESE Winds
Sept 23-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
Sept 24-2017	08:00 HRS	Clear	Normal	Light ENE Winds
Sept 24-2017	18:00 HRS	Clear	Normal	Light ESE Winds
Sept 25-2017	08:00 HRS	Clear	Normal	Moderate W Winds
Sept 25-2017	18:00 HRS	Clear	Normal	Light SW Winds
Sept 26-2017	08:00 HRS	Clear	Normal	Strong WNW Winds
Sept 26-2017	18:00 HRS	Clear	Normal	Moderate WNW Winds
Sept 27-2017	08:00 HRS	Clear	Normal	Moderate E Winds
Sept 27-2017	18:00 HRS	Clear	Normal	Moderate E Winds
Sept 28-2017	08:00 HRS	Clear	Normal	Strong SSW Winds
Sept 28-2017	18:00 HRS	Clear	Normal	Strong SSW Winds
Sept 29-2017	08:00 HRS	Clear	Normal	Strong NNW Winds
Sept 29-2017	18:00 HRS	Clear	Normal	Strong NNW Winds
Sept 30-2017	08:00 HRS	Clear	Normal	Moderate NNW Winds
Sept 30-2017	18:00 HRS	Clear	Normal	Moderate NNW Winds

DATE	TIME	PLUME COLOR	SIZE	COMMENTS
Oct 01-2017	08:00 HRS	Clear	Normal	Light NNW Winds
Oct 01-2017	18:00 HRS	Clear	Normal	Light NW Winds
Oct 02-2017	08:00 HRS	Clear	Normal	Moderate N Winds
Oct 02-2017	18:00 HRS	Clear	Normal	Very Strong N Winds
Oct 03-2017	08:00 HRS	Clear	Normal	Very Strong N Winds
Oct 03-2017	18:00 HRS	Clear	Normal	Strong NNW Winds
Oct 04-2017	08:00 HRS	Clear	Normal	Moderate W Winds
Oct 04-2017	18:00 HRS	Clear	Normal	Strong W Winds
Oct 05-2017	08:00 HRS	Clear	Normal	Strong WSW Winds
Oct 05-2017	18:00 HRS	Clear	Normal	Strong WSW Winds
Oct 06-2017	08:00 HRS	Clear	Normal	Moderate WSW Winds
Oct 06-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
Oct 07-2017	08:00 HRS	Clear	Normal	Light WSW Winds
Oct 07-2017	18:00 HRS	Clear	Normal	Light & Variable Winds
Oct 08-2017	08:00 HRS	Clear	Normal	Moderate SSW Winds
Oct 08-2017	18:00 HRS	Clear	Normal	Strong SSW Winds
Oct 09-2017	08:00 HRS	Clear	Normal	Moderate SW Winds
Oct 09-2017	18:00 HRS	Clear	Normal	Moderate SW Winds
Oct 10-2017	08:00 HRS	Clear	Normal	Strong SW Winds
Oct 10-2017	18:00 HRS	Clear	Normal	Strong WSW Winds
Oct 11-2017	08:00 HRS	Clear	Normal	Light NW Winds
Oct 11-2017	18:00 HRS	Clear	Normal	Light NW Winds
Oct 12-2017	08:00 HRS	Clear	Normal	Moderate NNW Winds
Oct 12-2017	18:00 HRS	Clear	Normal	Moderate NNW Winds
Oct 13-2017	08:00 HRS	Clear	Normal	Moderate NNE Winds
Oct 13-2017	18:00 HRS	Clear Clear	Normal	Moderate NNE Winds Moderate SW Winds
Oct 14-2017	08:00 HRS	Clear	Normal	Moderate SW Winds
Oct 14-2017 Oct 15-2017	18:00 HRS 08:00 HRS		Normal Normal	
Oct 15-2017	18:00 HRS	Obscured in Fog Obscured in Fog	Normal	Light NE Winds Moderate SW Winds
Oct 16-2017	08:00 HRS	Clear	Normal	Gale force SW Winds
Oct 16-2017	18:00 HRS	Clear	Normal	Strong WSW Winds
Oct 17-2017	08:00 HRS	Clear	Normal	Strong NNE Winds
Oct 17-2017	18:00 HRS	Clear	Normal	Strong N Winds
Oct 18-2017	08:00 HRS	Clear	Normal	Moderate W Winds
Oct 18-2017	18:00 HRS	Clear	Normal	Strong WSW Winds
Oct 19-2017	08:00 HRS	Clear	Normal	Light S Winds
Oct 19-2017	18:00 HRS	Clear	Normal	Light SSW Winds
Oct 20-2017	08:00 HRS	Clear	Normal	Moderate SW Winds
Oct 20-2017	18:00 HRS	Clear	Normal	Moderate W Winds
Oct 21-2017	08:00 HRS	Clear	Normal	Moderate NW Winds
Oct 21-2017	18:00 HRS	Clear	Normal	Moderate NW Winds
Oct 22-2017	08:00 HRS	Clear	Normal	Moderate NNW Winds
Oct 22-2017	18:00 HRS	Clear	Normal	Moderate N Winds
Oct 23-2017	08:00 HRS	Clear	Normal	Light WSW Winds
Oct 23-2017	18:00 HRS	Clear	Normal	Light WSW Winds
Oct 24-2017	08:00 HRS	Clear	Normal	Light W Winds
Oct 24-2017	18:00 HRS	Clear	Normal	Moderate WSW Winds
Oct 25-2017	08:00 HRS	Clear	Normal	Moderate SSW Winds
Oct 25-2017	18:00 HRS	Clear	Normal	Moderate SSW Winds
Oct 26-2017	08:00 HRS	Clear	Normal	Strong SSE Winds
Oct 26-2017	18:00 HRS	Clear	Normal	Strong SSE Winds
Oct 27-2017	08:00 HRS	Clear	Normal	Moderate S Winds
Oct 27-2017	18:00 HRS	Clear	Normal	Light W Winds
Oct 28-2017	08:00 HRS	Clear	Normal	Moderate N Winds
Oct 28-2017	18:00 HRS	Clear	Normal	Strong N Winds
Oct 29-2017	08:00 HRS	Clear	Normal	Light N Winds
Oct 29-2017	18:00 HRS	Clear	Normal	Light SSE Winds
Oct 30-2017	08:00 HRS	Clear	Normal	Strong SE Winds
Oct 30-2017	18:00 HRS	Clear	Normal	Gale Force SSE Winds
Oct 31-2017	08:00 HRS	Clear	Normal	Moderate SW Winds Moderate SW Winds
Oct 31-2017	18:00 HRS	Clear	Normal	WINDS

DATE	<u>TIME</u>	PLUME COLOR	SIZE	COMMENTS
Nov 01-2017	08:00 HRS	Clear	Normal	Moderate NW Winds
Nov 01-2017	18:00 HRS	Clear	Normal	Light NW Winds
Nov 02-2017	08:00 HRS	Clear	Normal	Light E Winds
Nov 02-2017	18:00 HRS	Clear	Normal	Moderate SE Winds
Nov 03-2017	08:00 HRS	Clear	Normal	Moderate SE Winds
Nov 03-2017	18:00 HRS	Clear	Normal	Strong SSE Winds
Nov 04-2017	08:00 HRS	Clear	Normal	Strong NW Winds
Nov 04-2017	18:00 HRS	Clear	Normal	Strong NNW Winds
Nov 05-2017	08:00 HRS	Clear	Normal	Moderate NE Winds
Nov 05-2017	18:00 HRS	Clear	Normal	Moderate SE Winds
Nov 06-2017	08:00 HRS	Clear	Normal	Strong SE Winds
Nov 06-2017	18:00 HRS	Clear	Normal	Strong S Winds
Nov 07-2017	08:00 HRS	Clear	Normal	Strong NNW Winds
Nov 07-2017	18:00 HRS	Clear	Normal	Moderate NNE Winds
Nov 08-2017	08:00 HRS	Clear	Normal	Moderate NNE Winds
Nov 08-2017	18:00 HRS	Clear	Normal	Moderate NNE Winds
Nov 09-2017	08:00 HRS	Clear	Normal	Strong NNE Winds
Nov 09-2017	18:00 HRS	Clear	Normal	Strong NNE Winds
Nov 10-2017	08:00 HRS	Clear	Normal	Strong SE Winds
Nov 10-2017	18:00 HRS	Clear	Normal	Strong ESE Winds
Nov 11-2017	08:00 HRS	Clear	Normal	Strong WNW Winds
Nov 11-2017	18:00 HRS	Clear	Normal	Strong WNW Winds
Nov 12-2017	08:00 HRS	Clear	Normal	Light NW Winds
Nov 12-2017	18:00 HRS	Clear	Normal	Light WNW Winds
Nov 13-2017	08:00 HRS	Clear	Normal	Light NNW Winds
Nov 13-2017	18:00 HRS	Clear	Normal	Light ESE Winds
Nov 14-2017	08:00 HRS	Clear	Normal	Gale Force NE Winds
Nov 14-2017	18:00 HRS	Clear	Normal	Gale Force NE Winds
Nov 15-2017	08:00 HRS	Clear	Normal	Gale Force NE Winds
Nov 15-2017	18:00 HRS	Clear	Normal	Strong NNE Winds
Nov 16-2017	08:00 HRS	Clear	Normal	Light NNE Winds
Nov 16-2017	18:00 HRS	Clear	Normal	Light ESE Winds
Nov 17-2017	08:00 HRS	Clear	Normal	Gale Force S Winds
Nov 17-2017	18:00 HRS	Clear	Normal	Gale Force WSW Winds
Nov 18-2017	08:00 HRS	Clear	Normal	Gale Force WNW Winds
Nov 18-2017	18:00 HRS	Clear	Normal	Gale Force WNW Winds
Nov 19-2017	08:00 HRS	Clear	Normal	Moderate SSW Winds
Nov 19-2017	18:00 HRS	Clear	Normal	Strong S Winds
Nov 20-2017	08:00 HRS	Clear	Normal	Strong WSW Winds
Nov 20-2017	18:00 HRS	Clear	Normal	Strong W Winds
Nov 21-2017	08:00 HRS	Clear	Normal	Strong WNW Winds
Nov 21-2017	18:00 HRS	Clear	Normal	Strong WNW Winds
Nov 22-2017	08:00 HRS	Clear	Normal	Moderate SSW Winds
Nov 22-2017	18:00 HRS	Clear	Normal	Moderate SSW Winds
Nov 23-2017	08:00 HRS	Clear	Normal	Storm Force WSW Winds
Nov 23-2017	18:00 HRS	No 1 on the chart	Large Flaring	Strong W Winds
Nov 24-2017	08:00 HRS	Clear	Normal	Strong W Winds
Nov 24-2017	18:00 HRS	Clear	Normal	Strong W Winds
Nov 25-2017	08:00 HRS	Clear	Normal	Moderate S Winds
Nov 25-2017	18:00 HRS	Clear	Normal	Strong SSE Winds
Nov 26-2017	08:00 HRS	Clear	Normal	Light Variable Winds
Nov 26-2017	18:00 HRS	Clear	Normal	Strong WSW Winds
Nov 27-2017	08:00 HRS	Clear	Normal	Strong W Winds
Nov 27-2017	18:00 HRS	Clear	Normal	Strong WNW Winds
Nov 28-2017	08:00 HRS	Clear	Normal	Strong NW WInds
Nov 28-2017	18:00 HRS	Clear	Normal	Strong NW Winds
Nov 29-2017	08:00 HRS	Clear	Normal	Strong SW Winds
Nov 29-2017	18:00 HRS	Clear	Normal	Strong SW Winds
Nov 30-2017	08:00 HRS	Clear	Normal	Very Strong NNW Winds
Nov 30-2017	18:00 HRS	Clear	Normal	Moderate NNW Winds
-			**	

DATE	<u>TIME</u>	PLUME COLOR	SIZE	COMMENTS
Dec 01-2017	08:00 HRS	Clear	Normal	Light S Winds
Dec 01-2017	18:00 HRS	Clear	Normal	Moderate SE Winds
Dec 02-2017	08:00 HRS	Clear	Normal	Moderate NE Winds
Dec 02-2017	18:00 HRS	Clear	Normal	Strong NE Winds
Dec 03-2017	08:00 HRS	Clear	Normal	Moderate NE Winds
Dec 03-2017	18:00 HRS	Clear	Normal	Moderate NE Winds
Dec 04-2017	08:00 HRS	Clear	Normal	Moderate NE Winds
Dec 04-2017	18:00 HRS	Clear	Normal	Strong NE Winds
Dec 05-2017	08:00 HRS	Clear	Normal	Strong N Winds
Dec 05-2017	18:00 HRS	Clear	Normal	Strong N Winds
Dec 06-2017	08:00 HRS	Clear	Normal	Moderate SEE Winds
Dec 06-2017	18:00 HRS	Clear	Normal	Strong SSE Winds
Dec 07-2017	08:00 HRS	Clear	Normal	Moderate W Winds
Dec 07-2017	18:00 HRS	Clear	Normal	Moderate NNW Winds
Dec 08-2017	08:00 HRS	Clear	Normal	Moderate W Winds
Dec 08-2017	18:00 HRS	Clear	Normal	Moderate WNW Winds
Dec 09-2017	08:00 HRS	Clear	Normal	Light ESE Winds
Dec 09-2017	18:00 HRS	Clear	Normal	Moderate E Winds
Dec 10-2017	08:00 HRS	Clear	Normal	Storm Force SSW Winds
Dec 10-2017	18:00 HRS	Clear	Normal	Gale Force Winds WSW Winds
Dec 11-2017	08:00 HRS	Clear	Normal	Moderate W Winds
Dec 11-2017	18:00 HRS	Clear	Normal	Moderate SW Winds
Dec 12-2017	08:00 HRS	Clear	Normal	Light N Winds
Dec 12-2017	18:00 HRS	Clear	Normal Normal	Moderate E Winds
Dec 13-2017	08:00 HRS	Clear Clear	Normal	Gale Force Winds SSE Winds Gale Force Winds S Winds
Dec 13-2017 Dec 14-2017	18:00 HRS	Clear	Normal	Storm Force Winds WSW Winds
Dec 14-2017	08:00 HRS 18:00 HRS	Clear	Normal	Gale Force Winds WSW Winds
Dec 15-2017	08:00 HRS	Clear	Normal	Gale Force Winds W Winds
Dec 15-2017	18:00 HRS	Clear	Normal	Strong W Winds
Dec 16-2017	08:00 HRS	Clear	Normal	Gale Force Winds NE Winds
Dec 16-2017	18:00 HRS	Clear	Normal	Gale Force Winds N Winds
Dec 17-2017	08:00 HRS	Clear	Normal	Gale Force Winds WNW Winds
Dec 17-2017	18:00 HRS	Clear	Normal	Gale Force Winds WNW Winds
Dec 18-2017	08:00 HRS	Clear	Normal	Moderate NW Winds
Dec 18-2017	18:00 HRS	Clear	Normal	Moderate W Winds
Dec 19-2017	08:00 HRS	Clear	Normal	Light S Winds
Dec 19-2017	18:00 HRS	Clear	Normal	Moderate SW Winds
Dec 20-2017	08:00 HRS	Clear	Normal	Strong W Winds
Dec 20-2017	18:00 HRS	Clear	Normal	Gale Force WNW Winds
Dec 21-2017	08:00 HRS	Clear	Normal	Gale Force WNW Winds
Dec 21-2017	18:00 HRS	Clear	Normal	Gale Force WNW Winds
Dec 22-2017	08:00 HRS	Clear	Normal	Strong WNW Winds
Dec 22-2017	18:00 HRS	Clear	Normal	Strong WNW Winds
Dec 23-2017	08:00 HRS	Clear	Normal	Light E Winds
Dec 23-2017	18:00 HRS	Clear	Normal	Strong SE Winds
Dec 24-2017	08:00 HRS	Clear	Normal	Very Strong SW Winds
Dec 24-2017	18:00 HRS	Clear	Normal	Strong SW Winds
Dec 25-2017	08:00 HRS	Clear	Normal	Gale Force E Winds
Dec 25-2017	18:00 HRS	Clear	Normal	Gale Force SW Winds
Dec 26-2017	08:00 HRS	Clear	Normal	Storm Force W Winds
Dec 26-2017	18:00 HRS	Clear	Normal	Storm Force W Winds
Dec 27-2017	08:00 HRS	Clear	Normal	Storm Force W Winds
Dec 27-2017	18:00 HRS	Clear	Normal	Storm Force W Winds
Dec 28-2017	08:00 HRS	Clear	Normal	Storm Force W Winds
Dec 28-2017	18:00 HRS	Clear	Normal	Gale Force WNW Winds
Dec 29-2017	08:00 HRS	Clear	Normal	Strong WNW Winds
Dec 29-2017	18:00 HRS	Clear	Normal	Light W Winds
Dec 30-2017	08:00 HRS	Obstructed with snow	Normal	Strong NW Winds
Dec 30-2017	18:00 HRS	Clear	Normal	Strong W Winds
Dec 31-2017	08:00 HRS	Clear	Normal	Strong NW Winds
Dec 31-2017	18:00 HRS	Clear	Normal	Gale Force W Winds